Journal of Materials Science

, Volume 44, Issue 5, pp 1394–1403 | Cite as

Transformation characteristics of ductile iron austempered from intercritical austenitizing temperature ranges

  • Mehmet ErdoganEmail author
  • Volkan Kilicli
  • Bilge Demir


In the present work, the transformation characteristics of ductile iron austempered from intercritical austenitization temperature ranges were investigated. For this purpose, an unalloyed ductile cast iron containing 3.50 wt% C, 2.63 wt% Si and 0.318 wt% Mn were intercritically austenitized (partially austenitized) at various temperatures and then rapidly transformed to a salt bath held at the 365 °C for austempering for various times to produce dual matrix structure with different ausferrite volume fractions in ferrite matrix. A microstructure map was created to illustrate the transformation of products quantitatively as a function of austempering time for a particular intercritical and austempering heat treatment temperature and time. It was demonstrated that the total volume fraction of transformed phases was approximately constant for all austempering times after rapidly transforming samples from a particular intercritical temperature to austempering temperature. It was found out that the new ferrite (It is also called epitaxial ferrite) introduced into the intercritically austenitized structure during austempering and its content was dependent on the intercritical austenitizing temperature and austempering time.


Ferrite Austenite Martensite Ductile Cast Iron Austempering 



The authors wish to acknowledge the financial supports of Gazi University Scientific Research Fund (Project no 07/2003–41) and DPT (The State Planning Organization of Turkey, Project no. 2001 K120590). The author is also indebted to ALFA Casting Company for Castings (Ankara, Turkey) and to Ankara Nuclear Research and Education Center (TAEK-ANAEM) for providing X-ray facilities.


  1. 1.
    Voigt RC, Eldoky LM, Chiou HS (1986) AFS Trans 94:645Google Scholar
  2. 2.
    Rashidi AM, Moshrefi-Torbati M (2000) Mater Let 45:203CrossRefGoogle Scholar
  3. 3.
    Cerah M, Kocatepe K, Erdogan M (2005) J Mater Sci 40:1CrossRefGoogle Scholar
  4. 4.
    Aranzabal J, Serramoglia G, Rousiere D (2003) Int J Cast Met Res 16:185CrossRefGoogle Scholar
  5. 5.
    Kobayashi T, Yamamoto H (1988) Metall Mater Trans A 19A:319CrossRefGoogle Scholar
  6. 6.
    Kobayashi T, Yamada S (1996) Metall Mater Trans A 27A:1961CrossRefGoogle Scholar
  7. 7.
    He ZR, Lin GX, Ji S (1997) Mater Charact 38:251CrossRefGoogle Scholar
  8. 8.
    Hafiz M (2001) Z Metallkd 11:1258Google Scholar
  9. 9.
    Kazerooni R, Nazarboland A, Elliot R (1997) Mater Sci Technol 13:1007CrossRefGoogle Scholar
  10. 10.
    ASM metals handbook (1991) Heat treating, vol 4. Metals Park, Ohio, p 683Google Scholar
  11. 11.
    Andrews KW (1965) J Iron Steel Inst 203:721Google Scholar
  12. 12.
    Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley, USA, p 412Google Scholar
  13. 13.
    Roberts CS (1953) Trans AIME 197:203Google Scholar
  14. 14.
    Cullity BD (1974) Elements of X-ray diffraction. Addison Wesley: Reading, MA, p 102Google Scholar
  15. 15.
    Labreque C, Gagne M (1998) Can Metall Q 38:343Google Scholar
  16. 16.
    Trudel A, Gagne M (1997) Can Metall Q 36:289CrossRefGoogle Scholar
  17. 17.
    Darwish N, Elliot R (1993) Mater Sci Technol 9:572CrossRefGoogle Scholar
  18. 18.
    Yazdani S, Elliot R (1999) Mater Sci Technol 15:531CrossRefGoogle Scholar
  19. 19.
    Zhao W, Wang G (1999) J Mater Proc Technol 95:27CrossRefGoogle Scholar
  20. 20.
    Bahmani M, Elliot R, Varahram N (1997) J Mater Sci 32:4783CrossRefGoogle Scholar
  21. 21.
    Mallia J, Grech M, Smallman RE (1998) Mater Sci Technol 14:452CrossRefGoogle Scholar
  22. 22.
    Putatunda SK (2001) Mater Manuf Processes 16:245CrossRefGoogle Scholar
  23. 23.
    Bayati H, Elliot R, Lorimer GW (1995) Mater Sci Technol 11:776CrossRefGoogle Scholar
  24. 24.
    Aranzabal J, Gutierrez I, Urcola JJ (1994) Mater Sci Technol 10:728CrossRefGoogle Scholar
  25. 25.
    Baydoğan M, Çimenoğlu H (2001) Scand J Metall 30:391CrossRefGoogle Scholar
  26. 26.
    Lawson RD, Matlock DK, Krauss G (1980) Metallography 13:71CrossRefGoogle Scholar
  27. 27.
    Huppi GS, Matlock DK, Krauss G (1980) Scripta Mater 14:1239CrossRefGoogle Scholar
  28. 28.
    Geib MD, Matlock DK, Krauss G (1980) Metall Trans A 11A:1683CrossRefGoogle Scholar
  29. 29.
    Lawson RD, Matlock DK, Krauss G (1981) In Kott RA, Bramfitt BL (eds) Fundamentals of dual-phase steels. AIME, New York, p 347Google Scholar
  30. 30.
    Erdogan M (2002) J Mater Sci 37:3623CrossRefGoogle Scholar
  31. 31.
    Erdogan M, Priestner R (1999) Mater Sci Technol 15:1273CrossRefGoogle Scholar
  32. 32.
    Erdogan M, Priestner R (2002) Mater Sci Technol 18:369CrossRefGoogle Scholar
  33. 33.
    Erdogan M (2003) Scripta Metall 48:501CrossRefGoogle Scholar
  34. 34.
    Sarwar M, Priestner R (1996) J Mater Sci 8:2091CrossRefGoogle Scholar
  35. 35.
    Matlock DK, Krauss G, Ramos LF, Huppi GS (1979) In: Kott RA, Morris JW (eds) Structure and properties of dual phase steels. AIME, New York, p 62Google Scholar
  36. 36.
    Rundman KB, Klug RC (1982) AFS Trans 90:499Google Scholar
  37. 37.
    Moore DJ, Rouns TN, Rundman KB (1985) AFS Trans 103:705Google Scholar
  38. 38.
    Hayrynen KL, Moore DJ, Rundman KB (1990) AFS Trans 127:471Google Scholar
  39. 39.
    Darwish N, Elliot R (1993) Mater Sci Technol 9:882CrossRefGoogle Scholar
  40. 40.
    Bayati H, Elliot R (1995) Mater Sci Technol 11:284CrossRefGoogle Scholar
  41. 41.
    Hamid Ali AS, Elliot R (1997) Mater Sci Technol 13:24CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Materials Division, Metallurgy Education Department, Faculty of Technical EducationGazi UniversityBesevler-AnkaraTurkey
  2. 2.Materials Division, Metallurgy Education Department, Faculty of Technical EducationZonguldak Karaelmas UniversityKarabukTurkey

Personalised recommendations