Advertisement

Journal of Materials Science

, Volume 42, Issue 18, pp 7950–7955 | Cite as

Disproportionation of Qm (0 ≤ m ≤ 4) species in partially devitrified Li2Si2O5 glasses with small amounts of P2O5

  • M. G. MortuzaEmail author
  • M. R. Ahsan
  • R. Dupree
  • D. Holland
Article

Abstract

The effect of addition of small amounts of P2O5 in the lithium disilicate glasses results in the scavenging of lithium metal ions by a phosphate group, Li3PO4. As a consequence of the scavenging, the silicate network partially repolymerises. The phosphate group remains intact during heat treatment of the optically clear, X-ray amorphous and slightly nucleated base glasses. However, the relative amounts of the silicate species, Qm (0 ≤ m ≤ 4), are dependent on the state of the glasses. These amounts, in the optically clear and X-ray amorphous, do not change with heat treatment but they do change, i.e. disproportionation occurs in the slightly nucleated and milky coloured glasses. The disproportionation follows the relation 2Q3 → Q2 + Q4 which is evident from the relative intensity of the different peaks.

Keywords

Disproportionation Li2O Glass Ceramic Base Glass Li3PO4 

References

  1. 1.
    McMillan PW (1979) Glass ceramics. Academic press, LondonGoogle Scholar
  2. 2.
    Dupree R, Holland D, Mortuza MG (1988) Phys Chem Glasses 29(1):18Google Scholar
  3. 3.
    Dupree R, Holland D, Mortuza MG (1987) Nature 328:416CrossRefGoogle Scholar
  4. 4.
    Nelson C, Tallant DR (1984) Phys Chem Glasses 25(2):31Google Scholar
  5. 5.
    James PF, McMillan PW (1968) Phil Mag 18:863CrossRefGoogle Scholar
  6. 6.
    James PF, McMillan PW (1970) Phys Chem Glasses 11(3):64Google Scholar
  7. 7.
    Matsuita K, Sakka S, Muki T, Tashiro M (1975) J Mater Sci 10:94CrossRefGoogle Scholar
  8. 8.
    James PF, McMillan PW (1971) J Mater Sci 6:1345CrossRefGoogle Scholar
  9. 9.
    News (1986) Ceram Bull 65(8):114Google Scholar
  10. 10.
    Harper H, McMillan PW (1972) Phys Chem Glasses 13:97Google Scholar
  11. 11.
    Hing P, McMillan PW (1973) J Mater Sci 8:1041CrossRefGoogle Scholar
  12. 12.
    British Standard Methods for the analysis of Glass, B5, 2649, Part 2,1957Google Scholar
  13. 13.
    Dupree R, Holland D, Williams DS (1986) J Non- Cryst Solids 81:185CrossRefGoogle Scholar
  14. 14.
    Dupree R, Holland D, McMillan PW, Pettifer RF (1984) J Non-Cryst Solids 68:399CrossRefGoogle Scholar
  15. 15.
    Dupree R, Holland D, Williams DS (1985) J de-Physique, Colloque C8, Supplement Au No 12, Tome 46:C8–119Google Scholar
  16. 16.
    Grimmer AR, Magi M, Hehnert M, Stade H, Samoson A, Wicker W, Lippmaa E (1984) Phys Chem Glasses 25(4):105Google Scholar
  17. 17.
    Murdoch JB, Stebbins JF, Carmichael ISE (1985) Am Miner 70:332Google Scholar
  18. 18.
    Dupree R, Holland D (1988) In: Lewis EH (ed) New horizons in glass and glass ceramics. Chapman and HallGoogle Scholar
  19. 19.
    Dupree R, Holland D, Mortuza MG (1990) J Non- Cryst Solids 116:148CrossRefGoogle Scholar
  20. 20.
    Stebbins JF (1987) Nature 330:465CrossRefGoogle Scholar
  21. 21.
    Stebbins JF (1988) J Non- Cryst Solids 106:359CrossRefGoogle Scholar
  22. 22.
    Mudrakovskii IL, Shmachkova VP, Kotsarenko NS, Mastikhin VM (1986) J Phys Chem Solids 47(4):335CrossRefGoogle Scholar
  23. 23.
    Turner GL, Smith KA, Kirkpatrick RJ, Old field E (1986) J Mag Reson 70:408Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • M. G. Mortuza
    • 1
    Email author
  • M. R. Ahsan
    • 1
  • R. Dupree
    • 2
  • D. Holland
    • 2
  1. 1.Department of PhysicsUniversity of RajshahiRajshahiBangladesh
  2. 2.Department of PhysicsUniversity of WarwickCoventryUK

Personalised recommendations