Journal of Materials Science

, Volume 42, Issue 14, pp 5835–5844 | Cite as

Evaluating environmental stress cracking thresholds by contact angle measurements

  • Peter J. WalshEmail author
  • Alan J. Lesser


This work probes a hypothesis for predicting a critical stress associated with of environmental stress cracking (ESC). The hypothesis is based on a thermodynamic criterion for localized swelling induced by stress on the polymer. The surface-active liquids chosen for study are oleic acid and dibutyl phthalate and the polymer is polycarbonate (PC). An experimental technique involving contact angle measurements of a sessile drop as a function of stress is used to probe the hypothesis. A new method for measuring contact angle using refraction is also introduced. No significant change in contact angle as function of stress is observed in either system, though the kinetics of craze initiation and inelastic strain at craze initiation do show a shift in response to stress at levels similar to those predicted by the hypothesis.


Contact Angle Solubility Parameter Sessile Drop Hydrostatic Stress Inelastic Strain 



We would like to acknowledge the generous support given this work by the Materials Research Science & Engineering Center on Polymers at the University of Massachusetts (MRSEC) and Cluster M of the Center for University of Massachusetts-Industry Research in Polymers (CUMIRP). Cluster M member companies include: Atofina, Essilor USA, Henckel Loctite, International Paper and Meadewestvaco.


  1. 1.
    Kambour RP (1973) Macromol Rev 7:1CrossRefGoogle Scholar
  2. 2.
    Raman A, Farris RJ, Lesser AJ (2003) J App Polymer Sci 88:550CrossRefGoogle Scholar
  3. 3.
    Gent AN (1970) J Mater Sci 5:925CrossRefGoogle Scholar
  4. 4.
    Mai YW (1986) J Mater Sci 21:904CrossRefGoogle Scholar
  5. 5.
    Yee AF (2000) Macromolecules 33:1338CrossRefGoogle Scholar
  6. 6.
    McGrath JE Parvatareddy H, Dillard JG, Dillard DA (1999) J Adhesion 69:83CrossRefGoogle Scholar
  7. 7.
    de Gennes PG (1985) Rev Mod Physics 57:827CrossRefGoogle Scholar
  8. 8.
    Kwok DY, Neumann AW (1999) In: Surface characterization methods; surfactant science series, vol. 87. Marcel Dekker, New York, NY, p 37Google Scholar
  9. 9.
    Langmuir I (1937) J Amer Chem Soc 59:2400CrossRefGoogle Scholar
  10. 10.
    Rondelez F, Allain C, Ausserre D (1985) J Colloid Interface Sci 107:5CrossRefGoogle Scholar
  11. 11.
    Flory PJ (1953) In: Principles of polymer chemistry. Cornell University Press, Ithaca, NY, p 576Google Scholar
  12. 12.
    Gent AN (1989) J Polaymer Sci Part B 27:893CrossRefGoogle Scholar
  13. 13.
    Treloar LRG (1950) Trans Faraday Soc 46:783CrossRefGoogle Scholar
  14. 14.
    Treloar LRG (1972) Polymer 13:195CrossRefGoogle Scholar
  15. 15.
    Treloar LRG (1972) Polymer 13:203CrossRefGoogle Scholar
  16. 16.
    Mark JE (1999) Polymer data handbook Oxford Univ. Press New York, NY p 363Google Scholar
  17. 17.
    Barton AFM (1983) In: CRC handbook of solubility parameters and other cohesion parameters. CRC Press, Boca Raton, FLGoogle Scholar
  18. 18.
    Mandel J (1964) In: The statistical analysis of experimental data. John Wiley & Sons, New York, NY, p 72Google Scholar
  19. 19.
    Arnold JC (1995) J Mater Sci 30:655CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Polymer Science and EngineeringUniversity of MassachusettsAmherstUSA

Personalised recommendations