Advertisement

Journal of Materials Science

, Volume 42, Issue 14, pp 5826–5834 | Cite as

Experimental and numerical study of elastic behavior of heterogeneous model materials with spherical inclusions

  • N. Tessier-Doyen
  • J. C. GlandusEmail author
  • M. Huger
Article

Abstract

The elastic properties of multi-phased materials have been studied in many papers, mainly focused on the analytical aspect of the problem (Voigt, Reuss, Hashin and Shtrikman...). For a few years, the large diffusion of FEM software offers, beside the analytical and experimental approaches, a new popular way to characterize the behavior laws of such materials. This work deals with two-phase model materials (spherical alumina inclusions in a vitreous matrix) whose linear elastic behaviors were determined by using the three previous approaches: analytical, experimental and numerical. Samples were elaborated with both various and controlled contents in second phase. The process consisted in determining their overall elastic characteristics starting from numerical 2D models, respecting the stereological relationships used in image analysis. After validation by comparison of the values obtained using four FEM software, the results were confronted with those given by analytical models so as with experimental ones. For the studied materials, experimental and numerical results are close to the lower bound of the Hashin and Shtrikman’s model.

Keywords

Spherical Inclusion Multiphased Material Alumina Ball Ultrasonic Wave Propagation Vitreous Matrix 

References

  1. 1.
    Burr A, Schmitt N, Berthaud Y (1993) Int. seminar on micromechanics of materials, 6–8 July 1993. MECAMAT93, Moret-sur Loing, France, pp 436–447Google Scholar
  2. 2.
    Coster M, Chermant JL (1989) Précis d’analyse d’images. Edition du CNRS, ParisGoogle Scholar
  3. 3.
    Cutard T, Fargeot D, Gault C, Huger M (1994) J Appl Phys 75:1909CrossRefGoogle Scholar
  4. 4.
    Asmani M, Kermel C, Leriche A, Ourak M (2001) J Eur Ceram Soc 21:1081CrossRefGoogle Scholar
  5. 5.
    Glandus JC (1981) Rupture fragile et résistance aux chocs thermiques de céramiques à usage mécanique. PhD thesis, University of LimogesGoogle Scholar
  6. 6.
    Voigt W (1910) Lehrbuch der Kristallphysik. Teubner, BerlinGoogle Scholar
  7. 7.
    Reuss A (1929) Z angew Math u Mech 9:49CrossRefGoogle Scholar
  8. 8.
    Hashin Z (1962) J Appl Mech 29:143CrossRefGoogle Scholar
  9. 9.
    Hashin Z, Shtrikman S (1963) J Mech Phys Solids 11:127CrossRefGoogle Scholar
  10. 10.
    Sangani AS, Mo G (1997) J Mech Phys Solids 45:2001CrossRefGoogle Scholar
  11. 11.
    Kushch VI (1997) Int J Solids Struct 34:1353CrossRefGoogle Scholar
  12. 12.
    Mogilevskaya SG, Crouch SL (2001) Int J Numer Methods Eng 52:1069CrossRefGoogle Scholar
  13. 13.
    Crouch SL, Mogilevskaya SG (2003) Int J Numer Methods Eng 58:537CrossRefGoogle Scholar
  14. 14.
    Mogilevskaya SG, Crouch SL (2004) Int J Numer Methods Eng 41:1285Google Scholar
  15. 15.
    Fullman RL (1953) Trans AIME J Met 5:447Google Scholar
  16. 16.
    King RP (1996) Chem Eng J 62:1Google Scholar
  17. 17.
    Roberts AP (1997) Phys Rev E 56:3203CrossRefGoogle Scholar
  18. 18.
    Roberts AP, Garboczi EJ (1999) J Mech Phys Solids 47:2029CrossRefGoogle Scholar
  19. 19.
    Zhonghua L, Haicheng G (1990) Met Trans 21:717CrossRefGoogle Scholar
  20. 20.
    Jaensson BO, Sundström BO (1972) Mat Sci Eng 9:217CrossRefGoogle Scholar
  21. 21.
    Watson GS (1971) Biometrika 58:483CrossRefGoogle Scholar
  22. 22.
    Xu YH, Pitot HC (2002) Comput Methods Progr Biomed 00:1Google Scholar
  23. 23.
    Sahagian DL, Proussevitch AA (1998) J Volc Geo Res 84:173CrossRefGoogle Scholar
  24. 24.
    Ankem S, Margolin H (1982) Met Trans 13:595CrossRefGoogle Scholar
  25. 25.
    Watt JP, O’Connell RJ (1980) Phys Earth Planet Int 21:359CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.ENSCI, GEMHLimogesFrance

Personalised recommendations