Journal of Materials Science

, Volume 42, Issue 3, pp 998–1003 | Cite as

A thermo-conductive approach to explain the origin of lamellar twisting in banded spherulites

  • Maria RaimoEmail author


Thermo-conductive and morphological considerations have led to the conclusion that ribbon-like crystals developed in the presence of thermal gradients behave in the same manner of macroscopic cantilevers, whose deformation in a non uniform temperature field is a deeply examined issue in the continuum mechanics. Therefore, the well known concepts and principles of this science have been applied to a lower scale (Pitteri M, Zanzotto G (2002) Continuum models for phase transitions and twinning in crystals, CRC Press, London) to explain the origin of lamellar twisting during the growth of optically banded spherulites in polymer samples squashed between glass surfaces. The developed model considers that the torsional motion of the lamellae is caused by the presence of thermal gradients across the thickness of the samples and accounts for both morphological and optical characteristics of polymer spherulites.


Crystallization Temperature Thermal Gradient Isotactic Polypropylene Torsion Moment Lamellar Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to thank eng. B. Pascucci for the useful discussion on the mechanics of deformation of beam and for critical review of the manuscript.


  1. 1.
    Pitteri M, Zanzotto G (2002) Continuum models for phase transitions and twinning in crystals, CRC Press, LondonCrossRefGoogle Scholar
  2. 2.
    Keller A (1957) Phil Mag 2:572CrossRefGoogle Scholar
  3. 3.
    Keller A (1955) J Polym Sci 17:291CrossRefGoogle Scholar
  4. 4.
    Bernauer F (1929) Forschungen zur Kristallkunde ed., Vol.2. Borntranger, BerlinGoogle Scholar
  5. 5.
    Point JJ (1955) Bull Acad R Belg 41:982Google Scholar
  6. 6.
    Keller A (1959) J Polym Sci 39:151CrossRefGoogle Scholar
  7. 7.
    Keith HD, Padden FJ (1959) J Polym Sci 39:123CrossRefGoogle Scholar
  8. 8.
    Keller A (1984) In: March N, Tosi M (eds) Polymers, liquid crystals and low-dimensional solids. Plenum Press, New York and LondonGoogle Scholar
  9. 9.
    Keith HD, Padden FJ Jr (1996) Macromolecules 29:7776CrossRefGoogle Scholar
  10. 10.
    Keith HD, Padden FJ Jr (1984) Polymer 25:28CrossRefGoogle Scholar
  11. 11.
    Singfield KL, Kloss JM, Brown GR (1995) Macromolecules 28:8006CrossRefGoogle Scholar
  12. 12.
    Owen AJ (1997) Polymer 38:3705CrossRefGoogle Scholar
  13. 13.
    Meille SV, Allegra G (1995) Macromolecules 28:7764CrossRefGoogle Scholar
  14. 14.
    Singfield KL, Brown GR (1995) Macromolecules 28:1290CrossRefGoogle Scholar
  15. 15.
    Snètivy D, Julius Vancso G (1994) Polymer 35:461CrossRefGoogle Scholar
  16. 16.
    Schultz JM, Kinloch DR (1969) Polymer 10:271CrossRefGoogle Scholar
  17. 17.
    Bassett DC, Olley RH, Al Raheil AM (1988) Polymer 29:539Google Scholar
  18. 18.
    Bassett DC, Vaughan AS (1985) Polymer 26:717CrossRefGoogle Scholar
  19. 19.
    Barham PJ, Keller A (1977) J Mater Sci 12:2141CrossRefGoogle Scholar
  20. 20.
    Foks J (1990) Polym Comm 31:255Google Scholar
  21. 21.
    Lovinger AJ, Chua JO, Gryte CC (1977) J Polym Sci Polym Physics 15:641CrossRefGoogle Scholar
  22. 22.
    Raimo M (2004) J App Polym Sci 94:2008CrossRefGoogle Scholar
  23. 23.
    Binsbergen FL, De Lange BGM (1970) Polymer 11:309CrossRefGoogle Scholar
  24. 24.
    Clark EJ, Hoffman JD (1984) Macromolecules 17:878CrossRefGoogle Scholar
  25. 25.
    Keith HD, Loomis TC (1984) J Polym Sci Polymer Phys Ed 22:295CrossRefGoogle Scholar
  26. 26.
    Bassett DC (1981) Principle of polymer morphology, chap. 2. University Press, Cambridge, p. 22Google Scholar
  27. 27.
    Mase GE (1970) Continuum mechanics. McGraw-Hill Book Company, New YorkGoogle Scholar
  28. 28.
    Landau LD, Lifšits EM (1979) Teoria dell’elasticità, 1st edn. Editori riuniti, Roma Google Scholar
  29. 29.
    Raimo M, Cascone E, Martuscelli E (2001) J Mater Sci 36:3591CrossRefGoogle Scholar
  30. 30.
    Hobbs JK, Binger DR, Keller A, Barham PJ (2000) J Polym Sci Polymer Phys Ed 38:1575CrossRefGoogle Scholar
  31. 31.
    Barham PJ, Keller A, Otun EL, Holmes PA (1984) J Mater Sci 19:2781CrossRefGoogle Scholar
  32. 32.
    Grady BP, Genetti WB, Lamirand RJ, Shah M (2001) Polym Eng Sci 41:820CrossRefGoogle Scholar
  33. 33.
    Barrow GM (1961) Physical chemistry. Mc Graw-Hill, Inc., Italian translation of the 3th edition (1973), Zanichelli, Bologna, 1976, p.419Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Istituto di Chimica e Tecnologia dei PolimeriPozzuoliItaly

Personalised recommendations