Journal of Materials Science

, Volume 42, Issue 3, pp 1010–1018 | Cite as

Synthesis of tungsten bronze powder and determination of its composition

  • Meirav Mann
  • Gennady E. Shter
  • George M. Reisner
  • Gideon S. GraderEmail author


Sodium tungsten bronze powders were synthesized by thermal reduction of a gas/melt system at high temperature. Samples having a cubic structure with different compositions were prepared. The initial melt included Na2WO4, WO3 and 10–40% mol. NaCl while the reducing gas was hydrogen at 750 °C. An original mechanism of controlling the powders size and distribution was suggested and discussed. A quantitative novel and simple method to determine the bronze composition based on TGA data was developed. An increase in the NaCl content led to a decrease of the crystals size and improved the powder uniformity. Fine powders, in the 2–5 μm size range, were synthesized from melt with 40% mol of NaCl. The stoichiometry parameter x of the obtained bronzes ranged from 0.8 to 0.92. An excellent agreement between x values determined by the classical XRD route and the proposed TGA method was demonstrated.


Sodium Tungsten Tungsten Bronze Na2WO4 Tungsten Trioxide Bronze Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The investigations were supported by the Technion’s fund for the promotion of research and in part by a joint grant from the Center for Adsorption in Science of the Ministry of Immigrant Absorption State of Israel and the Committee for Planning and Budgeting of the Council for Higher Education under the framework of the KAMEA Program.


  1. 1.
    Philipp J, Schwebel P (1879) Ber Deutsch Chem Ges 12:2234CrossRefGoogle Scholar
  2. 2.
    Edwards PP, Rao CNR (1985) The metallic and nonmetallic states of matter. Taylor & FrancisGoogle Scholar
  3. 3.
    Hagenmuller P (1971) In: Progress in solid state chemistry, vol 5. Oxford Pergamon, p 71Google Scholar
  4. 4.
    Sienko MJ (1963) In: Non-stoichiometric compounds. Advances in Chemistry Series, American Chemical Society, p 224Google Scholar
  5. 5.
    Ribnick AS, Post B, Banks E (1963) In: Non-stoichiometric compounds. Advances in Chemistry Series, American Chemical Society, p 246Google Scholar
  6. 6.
    Randin JP (1974) J Chem Educ 51(1):32CrossRefGoogle Scholar
  7. 7.
    Brown BW, Banks E (1954) J Am Chem Soc 76:963CrossRefGoogle Scholar
  8. 8.
    Barabushkin AN, Kaliev KA, Vakarin SV, Dokuchaev LYa, Butrimov VV, Aksent’ev AG (1988) U.S.S.R., SU 1425531 A1 19880923Google Scholar
  9. 9.
    Ozerov RP (1954) Uspekhi Khimii 24:951Google Scholar
  10. 10.
    Shanks HR (1972) J Crystal Growth 13/14:433CrossRefGoogle Scholar
  11. 11.
    Bartha L, Kiss AB, Szalay T (1995) Int J Refractory Metals & Hard Mater 13(1–3):77CrossRefGoogle Scholar
  12. 12.
    Shurdumov BK (2001) Izvestiya Vysshikh Uchebnykh Zavedenii, Khimiya i Khimicheskaya Tekhnologiya 44(6):152Google Scholar
  13. 13.
    Shurdumov BK, Shurdumov GK, Kuchukova MA (1999) RU 2138445C1Google Scholar
  14. 14.
    Salje E, Hatami H (1973) Z Allg Chem 396:267CrossRefGoogle Scholar
  15. 15.
    Zhu YT, Manthiram A (1994) J Solid Sate Chem 110:187CrossRefGoogle Scholar
  16. 16.
    Fan R, Chen XH, Gui Z, Li SY, Chen ZY (2001) Mat Let 49:14CrossRefGoogle Scholar
  17. 17.
    Dickens PG, Whittingham MS (1965) M S Trans Faraday Soc 61:1226CrossRefGoogle Scholar
  18. 18.
    Weber MF, Bevolo AJ, Shanks HR, Danielson GC (1981) J Electrochem Soc 128(5):996CrossRefGoogle Scholar
  19. 19.
    Bevolo AJ, Weber MF, Shanks HR, Danielson GC (1981) J Electrochem Soc 128(5):1004CrossRefGoogle Scholar
  20. 20.
    Shanks HR, Bevolo AJ, Danielson GC, Neker MF (1980) Fuel cell oxygen electrode, U.S. Pat. Appl. US 18211Google Scholar
  21. 21.
    Binder H, Knoedler R, Koehling A, Sandstede G (1977) Device for the continuous determination of carbon monoxide content in air, U.S. Pat. Appl. US 580532Google Scholar
  22. 22.
    Wechter MA, Hahn PB, Ebert GM, Montoya PR, Voigt AF (1972) Anal Chem 45:7Google Scholar
  23. 23.
    Hahn PB, Wechter MA, Jhonson DC, Voigt AF (1973) Anal Chem 45:7CrossRefGoogle Scholar
  24. 24.
    Whittimgham MS, Huggins RA (1971) J chem Phys 54:1CrossRefGoogle Scholar
  25. 25.
    van Duyn D (1942) Recl Rtav Chim Pays-Bas, Belg 61:661Google Scholar
  26. 26.
    Cleaver B, Koronaios P (1994) J Chem Eng Data 39(4):848CrossRefGoogle Scholar
  27. 27.
    Khakulov ZL, Mohosoev MV, Vorozgbit VU, Shurdumov GK (1983) Khimia I Tekhnol Molibdena I Vol’frama, Nal’chik, USSR 7:23Google Scholar
  28. 28.
    Vorozgbit VU, Shurdumov GK, Kodzokov KhA (1979) Khimia I Tekhnol Molibdena I Vol’frama, Nal’chik, USSR 5:79Google Scholar
  29. 29.
    Shurdumov BK (1976) Khimia I Tekhnol Molibdena I Vol’frama, Nal’chik, USSR 3:175Google Scholar
  30. 30.
    Hoermann F (1928) Zs Anorgan Allgem Chem 177(2–3):145; Tropov NA, Barzakovsky VP, Lapin VV, Kurtseva NN (1969) Phase diagrams of silicates systems. Academy of Science USSR, “Nauka”, Leningrad, p 628Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Meirav Mann
    • 1
  • Gennady E. Shter
    • 1
  • George M. Reisner
    • 2
  • Gideon S. Grader
    • 1
    Email author
  1. 1.Chemical Engineering DepartmentTechnionHaifaIsrael
  2. 2.Crown Center for Superconductivity and Physics DepartmentTechnionHaifaIsrael

Personalised recommendations