Preparation and characterization of carbon-coated ZnO and CaO powders by pyrolysis of PVA
- 354 Downloads
- 13 Citations
Abstract
Carbon-coated ZnO and CaO powders were prepared by Poly(vinyl alcohol) (PVA) pyrolysis at 700 °C in inert atmosphere and characterized for their potential utilization in the field of antibacterial ceramics. No peaks corresponding to carbon were detected after XRD measurements of as-coated powders; that is, carbon coating is amorphous. Certain increase in specific surface area was observed after coating in all powders. Based on additional characterizations supported by SEM observations and particle size distributions, it is concluded that the formation of nanoporous structure of coated carbon layer resulted in an increase in the surface area. Some agglomeration also observed after treating powders that decreased with increasing polymerization degree of PVA used as a carbon precursor.
Keywords
Pyrolysis Carbon Layer Ceramic Powder Polymerization Degree Coating OperationReferences
- 1.Itoh H, Watanabe N, Naka S (1988) J Mater Sci 23:43CrossRefGoogle Scholar
- 2.Wood BJ, Sanjurjo A, Tong GT, Swider SE (1991) Surf Coat Tech 49:228CrossRefGoogle Scholar
- 3.Mitchell TD, Dejonghe LC (1995) J Am Ceram Soc 78:199CrossRefGoogle Scholar
- 4.Capus JM (1998) Met Powder Rep 53:30CrossRefGoogle Scholar
- 5.Sherman AJ, Smith G, Baker D (2001) In: Proceedings of the advances in powder metallurgy & particulate materials, Metal Powder Industries Federation (MPIF), p 1578Google Scholar
- 6.Li G-J, Huang X-X, Guo J-K, Chen D-M (2002) Ceram Int 28:623CrossRefGoogle Scholar
- 7.Bubenzer A, Dischler B, Brandt G, Koidl P (1983) J Appl Phys 54:4590CrossRefGoogle Scholar
- 8.Soffer A, Koresh JE, Saggy S (1987) US Patent 4,685,940Google Scholar
- 9.Liu PKT, Gallaher GR, Wu JCS (1993) US Patent 5,262,198Google Scholar
- 10.McEnaney B (1999) In: Burchell TD (ed) Carbon materials for advanced technologies, Pergamon The Netherlands, pp 1–29Google Scholar
- 11.Acharya M, Foley HC (1999) J Mem Sci 161:1CrossRefGoogle Scholar
- 12.Walker BE, Rice RW, Becher PF, Bender BA, Coblenz WS (1983) Am Ceram Soc Bull 62:916Google Scholar
- 13.Rice RW (1983) Am Ceram Soc Bull 62:889Google Scholar
- 14.Wynne KJ, Rice RW (1984) Ann Rev Mater Sci 14:339CrossRefGoogle Scholar
- 15.Lehrle RS (1987) J Adv Analy Appl Pyrolysis 11:55CrossRefGoogle Scholar
- 16.Greil P (2000) Adv Eng Mater 2:339CrossRefGoogle Scholar
- 17.Dollimore D (1967) Carbon 5:65CrossRefGoogle Scholar
- 18.Finch CA (1973) Polyvinyl alcohol properties and applications. John Wiley, pp 1–622Google Scholar
- 19.Gilman JW (1994) ACS Symp Ser 599:161CrossRefGoogle Scholar
- 20.Inagaki M, Miura H, Konno H (1998) J Eur Ceram Soc 18:1011CrossRefGoogle Scholar
- 21.Krivoruchko OP, Maksimova NI, Zaikovskii VI, and. Salanov AN (2000) Carbon 38:1075CrossRefGoogle Scholar
- 22.Inagaki M, Fujita K, Takeuchi Y, Oshitai K, Iwata H, Konno H (2001) Carbon 39:921CrossRefGoogle Scholar
- 23.Lee H-Y, Baek J-K, Jang S-W, Lee S-M, Hong S-T, Lee K-Y, Kim M-H (2001) J Power Sources 101:206CrossRefGoogle Scholar
- 24.Chen F, Liu L, Shen Z, Xu GO, Hor TSA (2002) Appl Phys A Mater Sci Proc 74:317CrossRefGoogle Scholar
- 25.Inagaki M, Hirose H, Matsunaga T, Tsumura T, Toyoda M (2003) Carbon 41:2619CrossRefGoogle Scholar
- 26.Sawai J, Kawada E, Kanaou F, Igarashi I, Hashimoto A, Kokugan T, Shimizu M (1996) J Chem Eng Jpn 29:627CrossRefGoogle Scholar
- 27.Yamamoto O, Hotto M, Sawai J, Sasamoto T, Kojima H (1998) J Ceram Soc Jpn 106:1007CrossRefGoogle Scholar
- 28.Yamamoto O, Iida Y (2003) J Ceram Soc Jpn 111:614CrossRefGoogle Scholar
- 29.Yamamoto O, Nakakoshi K, Sasamoto T, Nakagawa H, Miura K (2000) Carbon 39:643Google Scholar
- 30.Yamamoto O, Sawai J, Kojima H, Sasamoto T (2002) J Mater Sci Mater Med 13:789CrossRefGoogle Scholar
- 31.Özkal B, Jiang W, Yamamoto O, Fuda K, Nakagawa Z (2004) In: Proceedings of the 42th symp basic science of ceramics, Ceramic Society of Japan, p 12Google Scholar