Journal of Materials Science

, Volume 42, Issue 3, pp 983–988 | Cite as

Preparation and characterization of carbon-coated ZnO and CaO powders by pyrolysis of PVA

  • Burak ÖzkalEmail author
  • Wei Jiang
  • Osamu Yamamoto
  • Kiyoshi Fuda
  • Zenbe-e Nakagawa


Carbon-coated ZnO and CaO powders were prepared by Poly(vinyl alcohol) (PVA) pyrolysis at 700 °C in inert atmosphere and characterized for their potential utilization in the field of antibacterial ceramics. No peaks corresponding to carbon were detected after XRD measurements of as-coated powders; that is, carbon coating is amorphous. Certain increase in specific surface area was observed after coating in all powders. Based on additional characterizations supported by SEM observations and particle size distributions, it is concluded that the formation of nanoporous structure of coated carbon layer resulted in an increase in the surface area. Some agglomeration also observed after treating powders that decreased with increasing polymerization degree of PVA used as a carbon precursor.


Pyrolysis Carbon Layer Ceramic Powder Polymerization Degree Coating Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Itoh H, Watanabe N, Naka S (1988) J Mater Sci 23:43CrossRefGoogle Scholar
  2. 2.
    Wood BJ, Sanjurjo A, Tong GT, Swider SE (1991) Surf Coat Tech 49:228CrossRefGoogle Scholar
  3. 3.
    Mitchell TD, Dejonghe LC (1995) J Am Ceram Soc 78:199CrossRefGoogle Scholar
  4. 4.
    Capus JM (1998) Met Powder Rep 53:30CrossRefGoogle Scholar
  5. 5.
    Sherman AJ, Smith G, Baker D (2001) In: Proceedings of the advances in powder metallurgy & particulate materials, Metal Powder Industries Federation (MPIF), p 1578Google Scholar
  6. 6.
    Li G-J, Huang X-X, Guo J-K, Chen D-M (2002) Ceram Int 28:623CrossRefGoogle Scholar
  7. 7.
    Bubenzer A, Dischler B, Brandt G, Koidl P (1983) J Appl Phys 54:4590CrossRefGoogle Scholar
  8. 8.
    Soffer A, Koresh JE, Saggy S (1987) US Patent 4,685,940Google Scholar
  9. 9.
    Liu PKT, Gallaher GR, Wu JCS (1993) US Patent 5,262,198Google Scholar
  10. 10.
    McEnaney B (1999) In: Burchell TD (ed) Carbon materials for advanced technologies, Pergamon The Netherlands, pp 1–29Google Scholar
  11. 11.
    Acharya M, Foley HC (1999) J Mem Sci 161:1CrossRefGoogle Scholar
  12. 12.
    Walker BE, Rice RW, Becher PF, Bender BA, Coblenz WS (1983) Am Ceram Soc Bull 62:916Google Scholar
  13. 13.
    Rice RW (1983) Am Ceram Soc Bull 62:889Google Scholar
  14. 14.
    Wynne KJ, Rice RW (1984) Ann Rev Mater Sci 14:339CrossRefGoogle Scholar
  15. 15.
    Lehrle RS (1987) J Adv Analy Appl Pyrolysis 11:55CrossRefGoogle Scholar
  16. 16.
    Greil P (2000) Adv Eng Mater 2:339CrossRefGoogle Scholar
  17. 17.
    Dollimore D (1967) Carbon 5:65CrossRefGoogle Scholar
  18. 18.
    Finch CA (1973) Polyvinyl alcohol properties and applications. John Wiley, pp 1–622Google Scholar
  19. 19.
    Gilman JW (1994) ACS Symp Ser 599:161CrossRefGoogle Scholar
  20. 20.
    Inagaki M, Miura H, Konno H (1998) J Eur Ceram Soc 18:1011CrossRefGoogle Scholar
  21. 21.
    Krivoruchko OP, Maksimova NI, Zaikovskii VI, and. Salanov AN (2000) Carbon 38:1075CrossRefGoogle Scholar
  22. 22.
    Inagaki M, Fujita K, Takeuchi Y, Oshitai K, Iwata H, Konno H (2001) Carbon 39:921CrossRefGoogle Scholar
  23. 23.
    Lee H-Y, Baek J-K, Jang S-W, Lee S-M, Hong S-T, Lee K-Y, Kim M-H (2001) J Power Sources 101:206CrossRefGoogle Scholar
  24. 24.
    Chen F, Liu L, Shen Z, Xu GO, Hor TSA (2002) Appl Phys A Mater Sci Proc 74:317CrossRefGoogle Scholar
  25. 25.
    Inagaki M, Hirose H, Matsunaga T, Tsumura T, Toyoda M (2003) Carbon 41:2619CrossRefGoogle Scholar
  26. 26.
    Sawai J, Kawada E, Kanaou F, Igarashi I, Hashimoto A, Kokugan T, Shimizu M (1996) J Chem Eng Jpn 29:627CrossRefGoogle Scholar
  27. 27.
    Yamamoto O, Hotto M, Sawai J, Sasamoto T, Kojima H (1998) J Ceram Soc Jpn 106:1007CrossRefGoogle Scholar
  28. 28.
    Yamamoto O, Iida Y (2003) J Ceram Soc Jpn 111:614CrossRefGoogle Scholar
  29. 29.
    Yamamoto O, Nakakoshi K, Sasamoto T, Nakagawa H, Miura K (2000) Carbon 39:643Google Scholar
  30. 30.
    Yamamoto O, Sawai J, Kojima H, Sasamoto T (2002) J Mater Sci Mater Med 13:789CrossRefGoogle Scholar
  31. 31.
    Özkal B, Jiang W, Yamamoto O, Fuda K, Nakagawa Z (2004) In: Proceedings of the 42th symp basic science of ceramics, Ceramic Society of Japan, p 12Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Burak Özkal
    • 1
    • 2
    Email author
  • Wei Jiang
    • 1
  • Osamu Yamamoto
    • 1
  • Kiyoshi Fuda
    • 1
  • Zenbe-e Nakagawa
    • 1
  1. 1.Research Institute of Materials and Resources, Faculty of Engineering and Resource ScienceAkita UniversityAkitaJapan
  2. 2.Chemical and Metallurgical Faculty, Metallurgical and Materials Engineering DepartmentIstanbul Technical UniversityMaslakTurkey

Personalised recommendations