Advertisement

Journal of Materials Science

, Volume 42, Issue 8, pp 2678–2683 | Cite as

Effect of the oxygen pressure on the photoluminescence properties of ZnO thin films by PLD

  • X. M. Fan
  • J. S. Lian
  • Qing Jiang
  • ZuoWan Zhou
Article

Abstract

ZnO thin films on Si(111) substrate were deposited by laser ablation of Zn target in oxygen reactive atmosphere; Nd-YAG laser with wavelength of 1064 nm was used as laser source. The experiments were performed at laser energy density of 31 J/cm2, substrate temperature of 400 °C and various oxygen pressures (5–65 Pa). X-ray diffraction was applied to characterize the structure of the deposited ZnO films and the optical properties of the ZnO thin films were characterized by photoluminescence with an Ar ion laser as a light source using an excitation wavelength of 325 nm. The influence of the oxygen pressure on the structural and optical properties of ZnO thin films was investigated. It was found that ZnO film with random growth grains can be obtained under the condition of oxygen pressure 5–65 Pa. It will be clearly shown that the grain size and the formation of intrinsic defects depend on the oxygen partial pressure and that high optical quality of the ZnO films is obtained under low oxygen pressure (5 Pa, 11 Pa) conditions.

Keywords

Oxygen Pressure Pulse Laser Deposition Green Emission Quantum Confinement Effect Laser Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by Foundation of National Key Basic Research and Development Program (No. 2004CB619301) and Project 985-automotive engineering of Jilin University.

References

  1. 1.
    Berger LI (1997) Semiconductor materials. CRC Press, New YorkGoogle Scholar
  2. 2.
    Zu P, Tang ZK, Wong GKL, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y (1997) Solid State Commun 103(8):459CrossRefGoogle Scholar
  3. 3.
    Hayamizu S, Tabata H, Tanaka H, Kawai T (1996) J Appl Phys 80(12):787CrossRefGoogle Scholar
  4. 4.
    Sun XW, Kwok HS (1999) J Appl Phys 86(12):408CrossRefGoogle Scholar
  5. 5.
    Bethke S, Pan H, Wesseis BW (1988) Appl Phys Lett 52:138CrossRefGoogle Scholar
  6. 6.
    Fan XM, Lian JS, Guo ZX, Lu HJ (2005) Appl Surf Sci 239:176CrossRefGoogle Scholar
  7. 7.
    Park WI, Yi GC (2001) J Electron Mater 30(12):L32CrossRefGoogle Scholar
  8. 8.
    Ko HJ, Chen YF, Zhu Z, Yao T, Kobayashi I, Uchiki H (2000) Appl Phys Lett 76(26):1905CrossRefGoogle Scholar
  9. 9.
    Natsume Y, Sakata H (2000) Thin Solid Films, 372(1):30CrossRefGoogle Scholar
  10. 10.
    Kim KK, Song JH, Jung HJ, Choi WK, Park SJ, Song JH (2000) J Appl Phys 87(12):3573CrossRefGoogle Scholar
  11. 11.
    Zhang GB, Shi CS, Han ZF, Shi JY, Fu ZX, Kirm M, Zimmerer G (2001) Chin Phys Lett 18(3):441CrossRefGoogle Scholar
  12. 12.
    Guo CX, Fu ZX, Shi CS (1999) Chin Phys Lett 16(9):146CrossRefGoogle Scholar
  13. 13.
    Chen XJ, Liu YC, Ma JG (2002) J Crystal Growth 240(3–4):467CrossRefGoogle Scholar
  14. 14.
    Jin BJ, Im S, Lee SY (2000) Thin Solid Films 366(1–2):107CrossRefGoogle Scholar
  15. 15.
    Ryu YR, Zhu S, Wrobel JM (2000) J Crystal Growth 216(1–4):326CrossRefGoogle Scholar
  16. 16.
    Hu WS, Liu ZG, Sun J, Zhu SN, Xu QQ, Feng D, Ji ZM (1997) J Phys Chem Solids 56(6):849Google Scholar
  17. 17.
    Craciun V, Amirhaghi S, Craciun D (1995) Appl Surf Sci 86(1–4):99CrossRefGoogle Scholar
  18. 18.
    Budrovic Z, Van Swygenhoven H, Derlet PM, Van Petegem S, Schmitt B (2004) Science 304:273CrossRefGoogle Scholar
  19. 19.
    Chen Y, Bagnall DM, Koh Hj, Park KT, Hiraga K, Zhu ZQ, Yao T (1998) J Appl Phys 84(12):3912CrossRefGoogle Scholar
  20. 20.
    Bagnall DM, Chen YF, Shen MY, Zhu Z, Goto T, Yao T (1998) J Crystal Growth 184/185:605CrossRefGoogle Scholar
  21. 21.
    Brus LE (1984) J Chem Phys 80(12):4403CrossRefGoogle Scholar
  22. 22.
    Cho S, Ma J, Kim Y, Sun Y, George K, Wong L, Ketterson JB (1999) Appl Phys Lett 75(26):2761CrossRefGoogle Scholar
  23. 23.
    Srikant V, Clarke DR (1997) J Mater Res 12:1425CrossRefGoogle Scholar
  24. 24.
    Zhao D, Pan X (1994) J Vac Sci Technol B 12(5):2880CrossRefGoogle Scholar
  25. 25.
    Liu YC, Xu HY, Mu R, Henderson DO (2003) Appl Phys Lett 83(26):1210CrossRefGoogle Scholar
  26. 26.
    Nakata Y, Budi Hartanto A, Kawakami M, Okada T, (2003) Proc SPIE 4830:238CrossRefGoogle Scholar
  27. 27.
    Vanheusden K, Warren WL, Seage CH, Tallent DR, Voigtang JA, Gnade BE (1996) J Appl Phys 79(12):7983CrossRefGoogle Scholar
  28. 28.
    Zhang DH, Xue ZY, Wang QP, Ma J (2004) Proc SPIE 4918:425CrossRefGoogle Scholar
  29. 29.
    Lin B, Fu Z, Jia Y (2001) Appl Phys Lett 79(27):943CrossRefGoogle Scholar
  30. 30.
    Bylander EG (1978) J Appl Phys 49(12):1188CrossRefGoogle Scholar
  31. 31.
    Sun YM (2000) Ph.D. thesis, University of Science and Technology of ChinaGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • X. M. Fan
    • 1
    • 2
  • J. S. Lian
    • 2
  • Qing Jiang
    • 2
  • ZuoWan Zhou
    • 1
  1. 1.College of Materials EngineeringSouthwest Jiaotong UniversityChengduChina
  2. 2.Key Lab of Automobile Materials, Ministry of Education, College of Materials Science and EngineeringJilin UniversityChangchunChina

Personalised recommendations