Journal of Materials Science

, Volume 42, Issue 10, pp 3675–3684 | Cite as

The tensile and creep behavior of Mg–Zn Alloys with and without Y and Zr as ternary elements

  • C. J. BoehlertEmail author


Tensile–creep experiments were conducted in the temperature range 100–200 °C and stress range 20–83 MPa for a series of magnesium–zinc–yttrium (Mg-Zn-Y) and mangnesium-zinc–zirconium (Mg-Zn-Zr) alloys ranging from 0 to 5.4 wt% Zn, 0 to 3 wt% Y, and 0 to 0.6 wt.% Zr. The greatest tensile–creep resistance was exhibited by an Mg–4.1Zn–0.2Y alloy. The room-temperature yield strength increased with increasing Y content for Mg–1.6–2.0Zn alloys. The greatest tensile strength and elongation was exhibited by Mg–5.4Zn–0.6Zr. This alloy also exhibited the finest grain size and the poorest creep resistance. The measured creep exponents and activation energies suggested that the creep mechanisms were dependent on stress. For applied stresses greater than 40 MPa, the creep exponents were between 4 and 8. For applied stresses less than 40 MPa, the creep exponent was 2.2. The calculated activation energies (Qapp) were dependent on temperature where the Qapp values between 100 and 150 °C (65 kJ/mol) were half those between 150 and 200 °C for the same applied stress value (30 MPa). Deformation observations indicated that the grain boundaries were susceptible to cracking in both tension and tension-creep, where at low applied stresses grain boundary sliding was suggested where strain accommodation occurred through grain boundary cracking. Thus grain size and grain boundaries appeared to be important microstructural parameters affecting the mechanical behavior. Microstructural effects on the tensile properties and creep behavior are discussed in comparison to other Mg-based alloy systems.


Creep Rate Creep Resistance Stress Exponent Creep Strength Creep Mechanism 



This work was partially supported by the National Science Foundation through grant DMR-0320992. The authors are grateful to Dr. Christopher Cowen and Messieurs Ken Knittel Daniel Burnett III, Matthew Dispenza and John Rich for their technical assistance.


  1. 1.
    Zhu SM, Gao X, Nie JF (2004) Mater Sci Eng A384:270CrossRefGoogle Scholar
  2. 2.
    Moreno IP, Nandy TK, Jones JW, Allison JE, Pollock TM (2003) Scripta Mater 48:1029CrossRefGoogle Scholar
  3. 3.
    Baril E, Labelle P, Pekguleryuz MO (November 2003) J Metals:34Google Scholar
  4. 4.
    Ozturk K, Zhong Y, Luo AA, Liu Z-K (November 2003) J Metals:40Google Scholar
  5. 5.
    Rokhlin LL (2003) Magnesium alloys containing rare earth metals structure and properties. Taylor and Francis, New York, p 211Google Scholar
  6. 6.
    Moreno IP, Sohn KY, Jones JW, Allison JE (2001) Society of Automotive Engineers paper #2001-01-0425Google Scholar
  7. 7.
    Sklenicka V, Pahutova M, Kucharova K, Svoboda M, Langdon TG (2002) Metall Trans 33A:883CrossRefGoogle Scholar
  8. 8.
    Luo AA, Powell BR (2001) In: Hryn JH (ed) Magnesium technology. The Materials Society, Warrendale, PA, pp 137–144Google Scholar
  9. 9.
    Powell BR, Luo AA, Rezhets V, Bammarito JJ, Tiwari BL (2001) Society of Automotive Engineers paper #2001-01-0422Google Scholar
  10. 10.
    Powell BR, Rezhets V, Balogh M, Waldo R (2001) In: Hryn JH (ed) Magnesium technology. The Materials Society, Warrendale, PA, pp 175–182Google Scholar
  11. 11.
    Luo AA, MP Balogh, Powell BR (2001) Society of Automotive Engineers paper #2001-01-0423Google Scholar
  12. 12.
    Luo AA, Shinoda T (1998) Society of Automotive Engineers paper #980086Google Scholar
  13. 13.
    Maruyama K, Suzuki M, Sato H (2002) Metall Mater Trans 33A:875CrossRefGoogle Scholar
  14. 14.
    Suzuki M, Kimura T, Maruyama K, Oikawa H (1998) Mater Sci Eng A252:248CrossRefGoogle Scholar
  15. 15.
    Suzuki M, Inoue R, Sugihara M, Sato H, Koike J, Maruyama K, Oikawa H (2000) Mater Sci Forum 350–351:151CrossRefGoogle Scholar
  16. 16.
    Suzuki M, Kimura T, Koike J, Maruyama K (2003) Mater Sci Forum 426–432:593CrossRefGoogle Scholar
  17. 17.
    Suzuki M, Kimura T, Koike J, Maruyama K (2003) Scripta Mater 48:997CrossRefGoogle Scholar
  18. 18.
    Suzuki M, Kimura T, Koike J, Maruyama K (2004) Mater Sci Eng A387–389:706CrossRefGoogle Scholar
  19. 19.
    Sato T (1999) Mat B Jpn Inst Metals 38:294Google Scholar
  20. 20.
    Kawamura Y, Hayashi K, Inoue A, Masumoto T, (2001) Mater Trans 42:1172CrossRefGoogle Scholar
  21. 21.
    Inoue A, Kawamura Y, Matsushita M, Hayashi K, Koike J (2001) J Mater Res 16:1894CrossRefGoogle Scholar
  22. 22.
    Inoue A, Matsushita M, Kawamura Y, Amiya K, Hayashi K, Koike J (2002) Mater Trans 43:580CrossRefGoogle Scholar
  23. 23.
    Abe E, Kawamura Y, Hayashi K, Inoue A (2002) Acta Mater 50:3845CrossRefGoogle Scholar
  24. 24.
    Ping DH, Hono K, Kawamura Y, and Inoue A (2002) Phil Mag Lett 82:543CrossRefGoogle Scholar
  25. 25.
    Nishida M, Kawamura Y, Yamamuro T (2004) Mater Sci Eng A375–377:1217CrossRefGoogle Scholar
  26. 26.
    Watanabe H, Mukai T, Ishikawa K, Mabuchi M, Higashi K (2001) Mater Sci Eng A307:119CrossRefGoogle Scholar
  27. 27.
    Watanabe H, Mukai T, Higashi K (1988) Superplastic forming. The Minerals, Metals, and Materials Society, Warrendale, PA, p 179Google Scholar
  28. 28.
    Standard Test Methods for Determining Grain Size Designation E 112–88 (1988) American Society for Testing and Materials (ASTM), West Conshohocken, PA, pp 228–253Google Scholar
  29. 29.
    ASM Handbook (1992) Alloys and phase diagrams (vol 3). ASM International, Materials Park, OH, p 285Google Scholar
  30. 30.
    Emley EF (1966) Principles of magnesium technology, 1st edn. Pergamon Press, Oxford, New YorkGoogle Scholar
  31. 31.
    Dargusch MS, Dunlopm GL (1998) In: Mordike BL, Kainer KU (ed) Magnesium alloys and their applications. Werkstoff-Informationsgesellschaft, Frankfurt, Germany, pp 277–282Google Scholar
  32. 32.
    Mordike RL, Lukac P (1997) Proceedings of the 3rd International Magnesium Conference. The Institute of Metals, London, England, pp 419–429Google Scholar
  33. 33.
    Regev M, Aghion E, Rosen A, Bamberger M (1998) Mater Sci Eng A252:6CrossRefGoogle Scholar
  34. 34.
    Regev M, Aghion E, Rosen A (1997) Mater Sci Eng A234–236:123CrossRefGoogle Scholar
  35. 35.
    Uchida H, Shinya T (1995), J Jpn Inst Light Metals 45(10): 572CrossRefGoogle Scholar
  36. 36.
    Dieter GE (1986) Mechanical metallurgy. McGraw-Hall, New York, NY, pp 432Google Scholar
  37. 37.
    Vagarali SS, Langdon TG (1982) Acta Metall 30:1157CrossRefGoogle Scholar
  38. 38.
    Blum W, Watzinger B, Weidinger P (1998) In: Mordike BL, Kainer KU (eds) Magnesium alloys and their applications. Werkstoff-Informationsgessellschaft mbH, Frankfurt, Germany, pp 49–60Google Scholar
  39. 39.
    Watzinger B, Weidinger P, Breutinger F, Blum W, Rosch R, Lipowsky H, Haldenwanger H-G (1998) In: Mordike BL, Kainer KU (eds) Magnesium alloys and their applications. Werkstoff-Informationsgessellschaft mbH, Frankfurt, Germany, pp 259–264Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingUSA

Personalised recommendations