Journal of Materials Science

, Volume 42, Issue 8, pp 2603–2611 | Cite as

Characteristics of nanostructure and electrical properties of Ti thin films as a function of substrate temperature and film thickness

  • H. Savaloni
  • K. Khojier
  • M. S. Alaee


Titanium films of different thickness at different substrate temperatures are prepared using PVD method. The nanostructure of these films was obtained using X-ray diffraction (XRD) and AFM, while the thicknesses were measured by means of Rutherford back scattering (RBS) technique. Resistivity, Hall coefficient, concentration of carriers and the mobility in these films are obtained. The results show that, the rutile phase of TiO2 is formed which is initially amorphous and as the film thickness increases it tends to become textured in (020) direction, which is more pronounced at higher temperatures and possibly transforms to anatase TiO2 with (112) orientation for thickest films of 224 nm. The conductivity and concentration of carriers increase with thickness, while the Hall coefficient and the mobility decrease. The activation energies in these samples were obtained from the Arrhenius plots of σ and RH. For thinner films ( \( E_{\hbox{a}} \approx 0.4 - 0.6 \) eV) and for thickest film (224 nm) a break point is observed at about 500 K, which is consistent with the idea of more processes becoming activated at higher temperatures.


TiO2 Rutile Substrate Temperature Thick Film Erbium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was carried out with the support of the University of Tehran and the Plasma Physics Research Centre, Science and Research Campus of I. A. University. We would like to thank the staff at the Nuclear Physics Research Centre of the Atomic Energy Authority of Iran, for their help with the RBS measurements. We are grateful to Ms. M. Shariati of Plasma Physics Research Centre, for AFM measurements.


  1. 1.
    Holleck H (1986) J Vac Sci Technol A 4:2661CrossRefGoogle Scholar
  2. 2.
    Sundgren J-E, Hentzell HTG (1986) J Vac Sci Technol A 4:2259CrossRefGoogle Scholar
  3. 3.
    Milosev I, Navinsek B, Strehblow H-H (1995) In: Corrosion properties of hard PVD nitride coatings (with emphasis on TiN), Scientific Series of the International Bureau, vol 37. GmbH, Forschungszentrum JulichGoogle Scholar
  4. 4.
    Sikkens M, Heereveld AAMTV, Vogelzang E, Boose CA (1983) Thin Solid Films 108:229CrossRefGoogle Scholar
  5. 5.
    Kopacz U, Ried R (1992) Z Metallkd 83:492Google Scholar
  6. 6.
    Claesson Y, Georgson M, Roos A, Ribbing C-G (1990) Solar Energy Mater 20:55CrossRefGoogle Scholar
  7. 7.
    Long M, Rack HJ (1998) Biomaterials 19:1621–1639CrossRefGoogle Scholar
  8. 8.
    Fox MA, Dulay MT (1993) Chem Rev 93:341CrossRefGoogle Scholar
  9. 9.
    Linsebigler AL, Lu G, Yates JT Jr. (1995) Chem Rev 95:735CrossRefGoogle Scholar
  10. 10.
    Anpo M, Takeuchi M (2003) J Catal. 216:503CrossRefGoogle Scholar
  11. 11.
    Hagfeldt A, Gratzel M (1995) Chem Rev 95:49CrossRefGoogle Scholar
  12. 12.
    Gratzel M (2001) Nature 414:338CrossRefGoogle Scholar
  13. 13.
    Gopel W, Reinhardt G (1996) In: Baltes H, Gopel W, Hesse J (eds) Sensors update. Wiley, New York, p. 47Google Scholar
  14. 14.
    Skubal LR, Meshkov NK, Vogt MC (2002) J Photochem Photobiol A: Chem 148:103CrossRefGoogle Scholar
  15. 15.
    Chang HT, Wu N-M, Zhu F (2000) Water Res 34:407CrossRefGoogle Scholar
  16. 16.
    Mills A, Hill G, Bhopal S, Parkin IP, O’Neill SA (2003) J Photochem Photobiol A: Chem. 160:185CrossRefGoogle Scholar
  17. 17.
    Savaloni H, Moradi GR, Player MA (2005) Vacuum 77:245CrossRefGoogle Scholar
  18. 18.
    Sathyamoorthy R, Narayandass SK, Mangalaraj D (2003) Solar Energy Mater Solar Cells 76:339CrossRefGoogle Scholar
  19. 19.
    Toney MF, Lee W-Y, Hedstrom JA, Kellock A (2003) J Appl Phys 93:9902CrossRefGoogle Scholar
  20. 20.
    Arranz A, Palacio C (2005) Surf Sci 588(1–3):92CrossRefGoogle Scholar
  21. 21.
    Moon K-S, Shin S-C (1996) J Appl Phys 79(8):4991CrossRefGoogle Scholar
  22. 22.
    Savaloni H, Bagheri Najmi S (2002) Vacuum 66(1):49CrossRefGoogle Scholar
  23. 23.
    Cartier M, Auffret S, Bayle-Guillemaud P, Ernult F, Fettar F, Dienya B (2002) J Appl Phys 91(3):1436CrossRefGoogle Scholar
  24. 24.
    Savaloni H, Shahrestani SA, Player MA (1997) Nanotechnology 8(4):172CrossRefGoogle Scholar
  25. 25.
    Qiu H, Wang F, Wu P, Pan L, Li L, Xiong L, Tian Y (2002) Thin Solid Films 414:150CrossRefGoogle Scholar
  26. 26.
    Cai K, Muller M, Bossert J, Rechtenbach A, Jandt KD (2005) Appl Surf Sci 250(1–4):252CrossRefGoogle Scholar
  27. 27.
    Savaloni H, Taherizadeh A, Zendehnam A (2004) Physica B 349:44CrossRefGoogle Scholar
  28. 28.
    Savaloni H, Player MA, Marr GV (1992) Vacuum 43:965CrossRefGoogle Scholar
  29. 29.
    Savaloni H, Player MA (1995) Vacuum 46:167CrossRefGoogle Scholar
  30. 30.
    Huang TC, Lim G, Parmigiani F, Kay E (1985) J Vac Sci Technol A3:2161CrossRefGoogle Scholar
  31. 31.
    Clark RJL (1973) In: Bailar SC, Emelens HJ, Trofman-Dickenson AF (eds) Comprehensive inorganic chemistry, vol 3. Pergamon Press, Oxford, pp 375Google Scholar
  32. 32.
    Reece M, Morrell R (1991) J Mater Sci 26: 5566CrossRefGoogle Scholar
  33. 33.
    Rickerby DG (1997) Philos Mag B76:573CrossRefGoogle Scholar
  34. 34.
    Barbe CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Gratzel M (1997) J Am Ceram Soc 80:3157CrossRefGoogle Scholar
  35. 35.
    Negishi N, Takeuchi K, Ibusuki T, Datye AK (1999) J Mater Sci Lett 18: 515CrossRefGoogle Scholar
  36. 36.
    Zeman P, Takabayashi S (2002) Surf Coat Technol 153:93CrossRefGoogle Scholar
  37. 37.
    Lobl P, Huppertz M, Mergel D (1994) Thin Solid Films 251:72CrossRefGoogle Scholar
  38. 38.
    Frenck HJ, Kulisch W, Kuhr M, Kassing R (1991) Thin Solid Films 201:327CrossRefGoogle Scholar
  39. 39.
    Meng LJ, Santos MP (1993) Thin Solid Films 226:22CrossRefGoogle Scholar
  40. 40.
    Okimura K, Shibata A, Maeda N, Tachibana K, Noguchi Y, Tsuchida K (1995) Jpn J Appl Phys 34:4950CrossRefGoogle Scholar
  41. 41.
    Kazunori F, Gikan T, Iso Y (1993) Jpn J of Appl Phys 1:3561Google Scholar
  42. 42.
    Tokuda K, Miyashita K, Ubukata T, 7th international symposium on sputtering and plasma process (ISSP 2003), pp 96–99Google Scholar
  43. 43.
    Stamate MD (2000) Thin Solid Films 372:246CrossRefGoogle Scholar
  44. 44.
    Vigil E, Saadoun L, Ayllon JA, Domenech X, Zumeta I, Rodriguez-Clemente R (2000) Thin Solid Films 365:12CrossRefGoogle Scholar
  45. 45.
    Bessergenev VG, Khmelinskii IV, Pereira RJF, Krisuk VV, Turgambaeva AE, Igumenov IK (2002) Vacuum 64:275CrossRefGoogle Scholar
  46. 46.
    Muller J, Singh B, Surpplice NA (1972) J Phys D Appl Phys 5:1177CrossRefGoogle Scholar
  47. 47.
    Curzon AE (1984) J Less Common Metals 98:149CrossRefGoogle Scholar
  48. 48.
    Holloway DM, Swartz WE Jr (1977) Appl Spectrosc 31:167CrossRefGoogle Scholar
  49. 49.
    Movchan BA, Demchishin AV (1963) Phys Met Metall 28:83Google Scholar
  50. 50.
    Thornton JA (1975) J Vac Sci Technol 12:830CrossRefGoogle Scholar
  51. 51.
    Messier R (1986) J Vac Sci Technol A 4:490CrossRefGoogle Scholar
  52. 52.
    Grovenor CRM, Hentzell HTG, Smith DA (1984) Acta Metall 32:773CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of TehranTehranIran
  2. 2.Plasma Physics Research CenterScience and Research Campus of Islamic Azad. UniversityTehranIran

Personalised recommendations