Advertisement

Journal of Materials Science

, Volume 42, Issue 16, pp 6951–6955 | Cite as

Preparation of inorganic–organic pillared montmorillonite using ultrasonic treatment

  • Huiming GuoEmail author
  • Xiaoyan Jing
  • Lulu Zhang
  • Jun Wang
Article

Abstract

Montmorillonite (Mt) is a clay mineral with expandable layer structure. Mesoporous pillared montmorillonite can be prepared by introducing gallery templates, such as simple metal cations, quaternary ammonium cations, long chain amines, and hydroxyed inorganic metal ions. In this paper, inorganic–organic pillared montmorillonite intercalated by aluminium and alkyl ammonium chloridize (HDTMA–Cl) was successfully prepared by ultrasonic treatment, and the physicochemical properties of the materials were systematically characterized by XRD, FT-IR, SEM and TEM techniques. The d001 basal spacings and microstructures of Mt–Al–HDTMA were characterized by XRD. The function group, crystal surface morphology, structural and chemical analysis of Mt–Al–HDTMA were measured by FT-IR, SEM, TEM and EDX. The results indicated that ultrasonic method might accelerate the diffusion of the intercalating species, which enhanced the textural properties and the morphologies. The results also suggested that aluminium and HDTMA–Cl reagent entered the interlayer of Mt, and that the crystal structure of the final Mt was preserved.

Keywords

Montmorillonite Sandwich Sheet Pillared Montmorillonite Metal Oxide Cluster Transmission Electron Microscopy Morphology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ge Z, Li D, Pinnavaia TJ (1994) Micropor Mater 3:165CrossRefGoogle Scholar
  2. 2.
    Srinivasan KR, Fogler HS (1990) Clay Clay Miner 38:287CrossRefGoogle Scholar
  3. 3.
    Moreno S, Sun Kou R, Molina R, Poncelet C (1999) J Catal 182:174CrossRefGoogle Scholar
  4. 4.
    Chmielarz L, Kustrowski P, Zbroja M, Rafalska-Lasocha A, Dudek B, Dziembaj R (2003) Appl Catal B Environ 45:103CrossRefGoogle Scholar
  5. 5.
    Vicente MA, Belver C, Trujillano R, Rives V, Álvarez AC, Lambert JF, Korili SA, Gandía LM, Gil A (2004) Appl Catal A Gen 267:47CrossRefGoogle Scholar
  6. 6.
    Dentel SK, Jamrah AI, Sparks DL (1998) Water Res 32:3689CrossRefGoogle Scholar
  7. 7.
    Wu PX, Liao ZW, Zhang HF, Guo JG (2001) Environ Int 26:401CrossRefGoogle Scholar
  8. 8.
    Katdare SP, Ramaswamy V, Ramaswamy AV (2000) Micropor Mesopor Mater 37:329CrossRefGoogle Scholar
  9. 9.
    Duong L, Bostrom T, Kloprogge T, Frost R (2005) Micropor Mesopor Mater 82:165CrossRefGoogle Scholar
  10. 10.
    He HP, Frost RL, Zhu J (2004) Spectrochim Acta A 60:2853CrossRefGoogle Scholar
  11. 11.
    Bottero JY, Axelos M, Tchoubar D, Cases JM, Fripiat JJ, Fiessinger F (1987) J Colloid Interface Sci 117(1):47CrossRefGoogle Scholar
  12. 12.
    Martinez-Ortiz MJ, Fetter G, Dominguez JM, Melo-Banda JA, Ramos-Gomez R (2003) Micropor Mesopor Mater 58:73CrossRefGoogle Scholar
  13. 13.
    He HP, Frost RL, Bostrom T, Yuan P, Duong L, Yang D, Xi YF, Kloprogge JT (2006) Appl Clay Sci 31:262CrossRefGoogle Scholar
  14. 14.
    Bodoardo S, Chiappetta R, Onida B, Figueras F, Garrone E (1998) Micropor Mesopor Mater 20:187CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Huiming Guo
    • 1
    Email author
  • Xiaoyan Jing
    • 1
  • Lulu Zhang
    • 1
  • Jun Wang
    • 1
  1. 1.School of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbinP.R. China

Personalised recommendations