Advertisement

Journal of Materials Science

, Volume 42, Issue 16, pp 6961–6964 | Cite as

Synthesis and electrochemical application of carbon nanotubes obtained from hexachloroethane

  • Mingwang Shao
  • Min Li
  • Huizhao Ban
  • Liling Niu
  • Hong Wang
  • Shiyan Pan
Article

Abstract

Carbon nanotubes (CNTs) with the average inner (outer) diameter of 10–20 nm (20–40 nm) and length up to 100s of nanometers were synthesized via Wurtz reaction at 400 °C for 12 h, using C2Cl6 and Na as reactants. These CNTs, having more defects because of the sp3 bonding raw material of C2Cl6, were used as electrode material to detect dopamine (DA) via cyclic voltammetry. The results show that there exists linear relation between peak currents and DA concentration in the range of 2 × 10−7∼2.8 × 10−4 mol L−1.The linear regression equation is expressed as Ip (μA) = 0.089 + 0.134c (μmol L−1). This CNTs-modified electrode showed high sensitivity with detection limit of 1 × 10−7 mol L−1.

Keywords

Gold Electrode Oxidation Peak Current Catalytic Pyrolysis Redox Peak Current Bare Gold Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The project was supported by the National Natural Science Foundation of China (20571001) and Excellent Scholar Foundation of Anhui Province Education Administration.

References

  1. 1.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  2. 2.
    Kukovecz A, Konya Z, Nagaraju N, Willems I, Tamasi A,Fonseca A, Nagy JB, Kiricsi I (2000) Phys Chem Chem Phys 2:3071CrossRefGoogle Scholar
  3. 3.
    Huczko A, Lange H, Sogabe T (2000) J Phys Chem A 104:10708CrossRefGoogle Scholar
  4. 4.
    Zhang H, Chen K, He Y, Zhu Y, Chen Y, Wu C, Wang J, Liao JH, Liu SH (2001) J Phys Chem Solids 62:2007CrossRefGoogle Scholar
  5. 5.
    Guillard T, Cetout S, Flamant G, Laplaze D (2000) J Mater Sci 35:419CrossRefGoogle Scholar
  6. 6.
    Chen M, Chen CM, Chen CF (2002) J Mater Sci 37:3561CrossRefGoogle Scholar
  7. 7.
    Moreno JMC, Yoshimura M (2001) J Am Chem Soc 123:741CrossRefGoogle Scholar
  8. 8.
    Jiang Y, Wu Y, Zhang SY, Xu CY, Yu WC, Xie Y, Qian YT (2000) J Am Chem Soc 122:12383CrossRefGoogle Scholar
  9. 9.
    Shao MW, Li Q, Wu J Xie B, Zhang SY, Qian YT (2002) Carbon 40:2961CrossRefGoogle Scholar
  10. 10.
    Ni YB, Shao MW, Zhang W, Wu ZC (2004) Chem Lett 33:494CrossRefGoogle Scholar
  11. 11.
    Jose-Yacaman M, Miki-Yoshida M, Rendon L, Santiesteban JG (1993) Appl Phys Lett 62:657CrossRefGoogle Scholar
  12. 12.
    Finar IL (1973) Organic chemistry, vol. 1, Longman, p 77Google Scholar
  13. 13.
    Wu KB, Hu SS (2004) Microchim Acta 144:131CrossRefGoogle Scholar
  14. 14.
    Zhang P, Wu FH, Zhao GC, Wei XW (2005) Bioelectrochemistry 67:109CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Mingwang Shao
    • 1
  • Min Li
    • 1
  • Huizhao Ban
    • 1
  • Liling Niu
    • 1
  • Hong Wang
    • 1
  • Shiyan Pan
    • 1
  1. 1.Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials ScienceAnhui Normal UniversityWuhuP.R. China

Personalised recommendations