Journal of Materials Science

, Volume 42, Issue 16, pp 6862–6865 | Cite as

Effects of hydrogenation and aging on the optical properties in porous Si layers

  • Do-Hyun Oh
  • Soojin Lee
  • Woon-Jo Cho
  • Tae Whan KimEmail author


The effects of hydrogenation and aging on the optical properties in porous Si (PS) layers were investigated by using photoluminescence (PL) measurements. When the hydrogenated PS layers were aged in air, the intensity of the PL spectrum increased. The emission peak for the hydrogenated PS layers shifted to higher energy with decreasing H2/N2 ratio. The relation of the dehydrogenized states in the as-formed PS surface to the quantum states of Si nanoparticles with relatively small sizes is discussed. These results indicate that the optical properties of PS layers are significantly affected by hydrogenation and aging.


Anodization Method Increase Etching Time Nonradiative Defect Irregular Porous Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work at KIST was supported by KIST contract 2E18540, and the work at Hanyang University was supported by the Korea Science and Engineering Foundation through the Quantum-functional Semiconductor Research Center at Dongguk University.


  1. 1.
    Kovalev D, Gross E, Diener J, Timoshenko VY, Fujii M (2004) Appl Phys Lett 85:3590CrossRefGoogle Scholar
  2. 2.
    Jacobsohn LG, Bennett BL, Cooke DW, Muenchausen RE, Nastasi M (2005) J Appl Phys 97:033528CrossRefGoogle Scholar
  3. 3.
    Hirschman KD, Tsyhcskov L, Duttagupta SP, Fauchet PM (1996) Nature 384:338CrossRefGoogle Scholar
  4. 4.
    Martin-Palma RJ, Pascual L, Landa A, Herrero P, Martinez-Duart JM (2004) Appl Phys Lett 85:2517CrossRefGoogle Scholar
  5. 5.
    Cheylan S, Elliman RG (2001) Appl Phys Lett 78:1225CrossRefGoogle Scholar
  6. 6.
    Kim B-H, Cho C-H, Kim T-W, Park N-M, Sung GY, Park S-J (2005) Appl Phys Lett 86:091908CrossRefGoogle Scholar
  7. 7.
    Kveder V, Badylevich M, Steinman E, Izotov A, Seibt M, Schroter W (2004) Appl Phys Lett 84:2106CrossRefGoogle Scholar
  8. 8.
    Ke YY, Ya MH, Chen YF, Wang JS, Lin HH (2002) Appl Phys Lett 80:3539CrossRefGoogle Scholar
  9. 9.
    Kang TW, Yuldashev ShU, Kim DY, Kim TW (2000) Jpn J Appl Phys 39:L25CrossRefGoogle Scholar
  10. 10.
    Tsai C, Li K-H, Kinosky DS, Qian R-Z, Hsu T-C, Irby JT, Banerjee SK, Tasch AF, Campbell JC, Hance BK, White JM (1992) Appl Phys Lett 60:1700CrossRefGoogle Scholar
  11. 11.
    Xiong ZH, Liao LS, Yuan S, Yang ZR, Ding XM, Hou XY (2001) Thin Solid Films 388:271CrossRefGoogle Scholar
  12. 12.
    Fukuda Y, Furuya K, Ishikawa N, Saito T (1997) J Appl Phys 82:5718CrossRefGoogle Scholar
  13. 13.
    Gelloz B, Sano H, Boukherroub R, Wayner DDM, Lockwood DJ, Koshida N (2003) Appl Phys Lett 83:2342CrossRefGoogle Scholar
  14. 14.
    Sun J, Lu YW, Du XW, Kulinich SA (2005) Appl Phys Lett 86:171905CrossRefGoogle Scholar
  15. 15.
    Gelloz B, Kojima A, Koshida N (2005) Appl Phys Lett 87:031107CrossRefGoogle Scholar
  16. 16.
    Pascual A, Fernández JF, Sánchez CR (2002) J Appl Phys 92:866CrossRefGoogle Scholar
  17. 17.
    Shin JH, Seo S-Y, Lee S-J (1998) Appl Phys Lett 73:3647CrossRefGoogle Scholar
  18. 18.
    Daami A, Bremond G, Stalmans L, Poortmans J (1999) J Lumin 80:169CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Do-Hyun Oh
    • 1
    • 2
  • Soojin Lee
    • 1
  • Woon-Jo Cho
    • 1
  • Tae Whan Kim
    • 2
    Email author
  1. 1.Nano Device Research CenterKorea Institute of Science & TechnologySeoulKorea
  2. 2.Advanced Semiconductor Research Center, Division of Electronics and Computer EngineeringHanyang UniversitySeongdong-gu, SeoulKorea

Personalised recommendations