Journal of Materials Science

, Volume 42, Issue 11, pp 3969–3976 | Cite as

Influence of texture on the mechanical properties of commercially pure magnesium prepared by powder metallurgy

  • P. PérezEmail author
  • G. Garcés
  • P. Adeva


In the present work the influence of texture on the mechanical properties up to 500 °C of commercially pure magnesium prepared by PM was determined. Extrusion of magnesium powders was carried out between 250 and 450 °C. All extruded materials exhibited an intense fibre texture with the basal planes parallel to the extrusion direction whose intensity increased in line with the extrusion temperature. The microstructure consisted of highly elongated magnesium powder particles. All the materials presented a heterogeneous grain size resulting from the size distribution of the original magnesium powder particles. In addition, small MgO particles were found mainly decorating the original powder boundaries. The best mechanical properties corresponded to the materials extruded at 400 and 450 °C. This behaviour was associated particularly with the intense fibre texture of these materials.


Magnesium Alloy Basal Plane Stress Exponent Extrusion Direction Basal Slip 



This work was supported by CAM under CAM 07N 0075-2002 project. P.P is indebted to MCYT for its financial support within the Ramón y Cajal Programme.


  1. 1.
    Luo AA (2004) Int Mater Rev 49:13CrossRefGoogle Scholar
  2. 2.
    Greenfield P, Vickers W (1967) J Nucl Mater 22:77CrossRefGoogle Scholar
  3. 3.
    Vickers W, Greenfield P (1968) J Nucl Mater 27:73CrossRefGoogle Scholar
  4. 4.
    Milička K, Čadek J, Ryš P (1970) Acta Metall 18:1071CrossRefGoogle Scholar
  5. 5.
    Krishnadev MR, Angers R, Krishnadas Nair CG, Huard G (1993) Jom 8:52CrossRefGoogle Scholar
  6. 6.
    Hauser FE, Landon PR, Dorn JE, (1956) Trans Asm 48:986Google Scholar
  7. 7.
    Humphreys FJ, Miller WS, Djazeb MR (1990) Mater Sci Tech 6:1157CrossRefGoogle Scholar
  8. 8.
    Hansen N, Bay B, (1981) Acta Metall 29:65CrossRefGoogle Scholar
  9. 9.
    Gupta M, Lu L, Lai MO, Lee KH (1999) Mrs Bull 34:1201CrossRefGoogle Scholar
  10. 10.
    Eddahbi M, Del Valle JA, Pérez-Prado MT, Ruano OA (2005) Mater Sci Eng A410–411:308CrossRefGoogle Scholar
  11. 11.
    Garcés G, Pérez P, Adeva P, (2005) Scripta Mater 52:615CrossRefGoogle Scholar
  12. 12.
    Anderson P, Cáceres CH, Koike J (2003) Mater Sci Forum 419–422:123CrossRefGoogle Scholar
  13. 13.
    Ono N, Nakamura K, Miura S (2003) Mater Sci Forum 419–422:195CrossRefGoogle Scholar
  14. 14.
    Wonsiewicz BC, Backofen WA (1967) Trans Tms-Aime 239:1422Google Scholar
  15. 15.
    Kelley EW, Jr.Hosford WF (1968) Trans Tms-Aime 242:5Google Scholar
  16. 16.
    Kelley EW, Jr.Hosford WF (1968) Trans. Tms-Aime 242:654Google Scholar
  17. 17.
    Ion SE, Humphreys FJ, White SH (1982) Acta. Metall 30:1909CrossRefGoogle Scholar
  18. 18.
    Gharghouri MA, Weatherly GC, Embury JD (1999) J Root Phil Mag A 79:1671CrossRefGoogle Scholar
  19. 19.
    Kleiner S, Uggowitzer PJ (2004) Mater Sci Eng A379:258CrossRefGoogle Scholar
  20. 20.
    Kim WJ, Hong SI, Kim YS, Min SH, Jeong HT, Lee JD (2003) Acta Mater 51:3293CrossRefGoogle Scholar
  21. 21.
    Vagarali SS, Langdon TG (1981) Acta Metall 29:1969CrossRefGoogle Scholar
  22. 22.
    Grossland IG, Jones RB (1972) Metal Sci J 6:162CrossRefGoogle Scholar
  23. 23.
    Han BQ, Dunand DC, (2001) Mater Sci Eng A300:235CrossRefGoogle Scholar
  24. 24.
    Ferkel H, Mordike BL (2001) Mater Sci Eng A298:93Google Scholar
  25. 25.
    Edelin G, Poirier JP (1973) Phil. Mag 28:1203CrossRefGoogle Scholar
  26. 26.
    Couret A, Caillard D (1985) Acta Metall 33:1447CrossRefGoogle Scholar
  27. 27.
    Couret A, Caillard D (1985) Acta Metall 33:1455CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Centro Nacional de Investigaciones Metalúrgicas (CSIC)MadridSpain

Personalised recommendations