Advertisement

Journal of Materials Science

, Volume 42, Issue 5, pp 1622–1637 | Cite as

Recent progress on the study of the microstructure and mechanical properties of ECAE copper

  • Florian H. Dalla TorreEmail author
  • Azdiar A. Gazder
  • Elena V. Pereloma
  • Christopher H. J. Davies
Nano May 2006

Abstract

Results on the microstructure and the tensile properties of equal channel angular extruded (ECAE) copper processed for one to 16 passes are presented and compared with the available literature data. With increasing number of passes (N), the microstructure changes from a strongly elongated shear band structure after N = 1 and 2, towards a more equiaxed subgrain and grain structure. This is accompanied by a decrease in the cell wall or subgrain-boundary widths and an increase in recovered or even recrystallised grain structures with low dislocation densities. Electron backscatter diffraction measurements have indicated that for lower N, the location of Σ3 boundaries is restricted to shear bands, while at greater N, Σ3 boundaries were found to be more widely distributed. Texture measurements indicate close similarity with simple shear texture components and a spread of the orientation components with greater N. Upon comparing the tensile behaviour of as-ECAE Cu with the surveyed literature, broad agreement on the strength of the material is achieved. However, a strong variation in the percentage elongation to failure is also noted. Strain hardening and deformation kinetic analysis via strain rate jump tests indicate an evolution from stage III to V hardening during post-ECAE compression and a saturation in the strain rate sensitivity after N=4 resulting in maximum values of ∼0.02. Our results suggest that rather than a change in deformation mechanism, the increase in ductility with increasing N is associated with an increase in the mean free path of dislocations—with the grain boundaries remaining actively involved as the transmitter of plastic strain and their interaction with dislocations being the rate controlling deformation mechanism.

Keywords

Strain Rate Sensitivity Texture Component Strain Path High Pressure Torsion Uniform Elongation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Mrs. C. Gu is kindly acknowledged for assistance in texture measurements. This work was supported by the Swiss National Science Foundation, Grant # 200021-105647 (FHDT), Monash International Post-Graduate Research Scholarship (AAG) and by the Australian Research Council Discovery Project, DP0557255 (CHJD, EVP).

References

  1. 1.
    Sevillano JG, Van Houtte P, Aernoudt E (1981) Prog Mater Sci 25:69CrossRefGoogle Scholar
  2. 2.
    Nes E (1998) Prog Mater Sci 41:129CrossRefGoogle Scholar
  3. 3.
    Kocks UF, Mecking H (2003) Prog Mater Sci 48:171CrossRefGoogle Scholar
  4. 4.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  5. 5.
    Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI (1981) Russian Metallurgy (Engl Transl) 1:115Google Scholar
  6. 6.
    Segal VM (1995) Mater Sci Eng A 197:157CrossRefGoogle Scholar
  7. 7.
    Zhorin VA, Shashkin DP, Yenikoponyan NS (1984) DAN SSSR 278:144Google Scholar
  8. 8.
    Kuznetsov RI, Bykov VI, Chernyshov VP, Pilyugin VP, Yefremov NA, Posheyev VV (1985) Sverdlovsk, IFM UNTS RAN, 1985, Preprint 4/85 (in Russian)Google Scholar
  9. 9.
    Bridgman PW (1952) McGraw-Hill, New York (Reprinted by Harvard University Press, Cambridge, Mass., USA (1964))Google Scholar
  10. 10.
    Birringer R, Gleiter H, Klein H-P, Marquardt P (1984) Phys Lett A 102:365CrossRefGoogle Scholar
  11. 11.
    Gleiter H (1989) Prog Mater Sci 33:223CrossRefGoogle Scholar
  12. 12.
    Lowe TC (2006) Mater Sci Eng 355:503–504Google Scholar
  13. 13.
    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317CrossRefGoogle Scholar
  14. 14.
    Ferrasse S, Segal VM, Hartwig KT, Goforth RE (1997) Metall Mater Trans A 28:1047CrossRefGoogle Scholar
  15. 15.
    Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A 257:328CrossRefGoogle Scholar
  16. 16.
    Lapovok RYe (2005) J Mater Sci 40:341CrossRefGoogle Scholar
  17. 17.
    Bowen JR, Gholinia A, Roberts SM, Prangnell PB (2000) Mater Sci Eng A 287:87CrossRefGoogle Scholar
  18. 18.
    Dalla Torre FH, Lapovok R, Sandlin J, Thompson PF, Davies CHJ, Pereloma EV (2004) Acta Mater 52:4819CrossRefGoogle Scholar
  19. 19.
    Humphreys FJ (2001) J Mater Sci 36:3833CrossRefGoogle Scholar
  20. 20.
    Bowen JR, Mishin OV, Prangnell PB, Juul Jensen D (2002) Scripta Mater 47:289CrossRefGoogle Scholar
  21. 21.
    Bunge H-J, Texture analysis in materials science: mathematical methods, Butterworth & Co., 1st ed., Berlin (1982)Google Scholar
  22. 22.
    Valiev RZ, Krasilnikov NA, Tzenev NK (1991) Mater Sci Eng A 137:35CrossRefGoogle Scholar
  23. 23.
    Valiev RZ, Mulyukov RR, Ovchinnikov VV (1990) Phil Mag Lett 62:253CrossRefGoogle Scholar
  24. 24.
    Valiev RZ, Kozlov EV, Mulyukov RR (1993) Mater Sci Eng A 168:141CrossRefGoogle Scholar
  25. 25.
    Valiev RZ, Mulyukov RR, Ovchinnikov VV, Shabashov VA (1991) Scripta Metall Mater 25:2717CrossRefGoogle Scholar
  26. 26.
    Valiev RZ, Korznikova GF, Mulyukov KY, Mishra RS, Mukherjee AK (1997) Phil Mag B 75:803Google Scholar
  27. 27.
    Valiev RZ, Kozlov EV, Ivanov YuF, Lian J, Nazarov AA, Baudelet B (1994) Acta Metall Mater 42:2467CrossRefGoogle Scholar
  28. 28.
    Mishin OV, Gottstein G (1998) Philos Mag A 78:373Google Scholar
  29. 29.
    Mishin OV, Juul Jensen D, Hansen N (2000) In: Hansen N, Huang X, Juul Jensen D (eds) Proc 21nd Risø Internat Symp Mater Sci: Recrystallisation-Fundamental Aspects and Relations to Deformation Microstructure. National Laboratory, Roskilde, Denmark, p 445Google Scholar
  30. 30.
    Mishin OV, Juul Jensen D, Hansen N (2003) Mater Sci Eng A. 342:320CrossRefGoogle Scholar
  31. 31.
    Agnew SR (1998) PhD thesis, Northwestern UniversityGoogle Scholar
  32. 32.
    Hughes DA, Hansen N (2000) Acta Mater 48:2985CrossRefGoogle Scholar
  33. 33.
    Mishin OV, Huang X, Brown JR, Juul Jensen D (2001) In: Hansen N, Huang X, Juul Jensen D (eds) Proc 22nd Risø Internat. Symp. Mater. Sci.: Recrystallisation-Fundamental Aspects and Relations to Deformation Microstructure. National Laboratory, Roskilde, Denmark, p 335Google Scholar
  34. 34.
    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1997) Acta Mater 45:4733CrossRefGoogle Scholar
  35. 35.
    Komura S, Horita Z, Nemoto M, Langdon TG (1999) J Mater Res 14:4044CrossRefGoogle Scholar
  36. 36.
    Baik SC, Hellmig RJ, Estrin Y, Kim HS, Metallkd Z (2003) 94:759Google Scholar
  37. 37.
    Vinogradov A, Hashimoto S, Patlan V, Kitagawa K (2001) Mater Sci Eng A 862:319Google Scholar
  38. 38.
    Mingler B, Karnthaler HP, Zehetbauer M, Valiev RZ (2001) Mater Sci Eng A 242:319Google Scholar
  39. 39.
    Höppel HW, Zhou ZM, Mughrabi H, Valiev RZ (2002) Philos Mag A 82:1781CrossRefGoogle Scholar
  40. 40.
    Wang YM, Ma E (2004) Acta Mater 52:1699CrossRefGoogle Scholar
  41. 41.
    Huang WH, Yu CY, Kao PW, Chang CP (2004) Mater Sci Eng A 366:221CrossRefGoogle Scholar
  42. 42.
    Wu SD, Wang ZG, Jiang CB, Li GY, Alexandrov IV, Valiev RZ (2004) Mater Sci Eng A 560:387Google Scholar
  43. 43.
    Han S, Lim C, Kim C, Kim S (2005) Metall Mater Trans A 36:467CrossRefGoogle Scholar
  44. 44.
    Vinogradov A, Suzuki T, Hashimoto S, Kitagawa K, Kuznetsov A, Dobatkin S (2006) Mater Sci For 971:503Google Scholar
  45. 45.
    Dalla Torre FH, Gazder AA, Gu CF, Davies CHJ, Pereloma EV, Met Mater Trans A (accepted for publication)Google Scholar
  46. 46.
    Etter AL, Solas D, Baudin T, Penelle R (2005) Mater Sci For 845:495Google Scholar
  47. 47.
    Baik SC, Estrin Y, Kim HS, Hellmig RJ (2003) Mater Sci Eng A 351:86CrossRefGoogle Scholar
  48. 48.
    Chang CP, Sun PL, Kao PW (2000) Acta Mater 48:3377CrossRefGoogle Scholar
  49. 49.
    Zehetbauer MJ, Steiner G, Schafler E, Korznikov A, Korznikova E (2006) Mater Sci For 57:503Google Scholar
  50. 50.
    Huang CX, Wang K, Wu SD, Zhang ZF, Li GY, Li SX (2006) Acta Mater 54:655CrossRefGoogle Scholar
  51. 51.
    Liao XZ, Zhao YH, Srinivasan SG, Zhu YT, Valiev RZ, Gunderov DV (2004) Appl Phys Lett 84:592CrossRefGoogle Scholar
  52. 52.
    Liao XZ, Zhao YH, Zhu YT, Valiev RZ, Gunderov DV (2004) J Appl Phys 96:636CrossRefGoogle Scholar
  53. 53.
    Meyers MA, Vöhringer O, Lubarda VA (2001) Acta Mater 49:4025CrossRefGoogle Scholar
  54. 54.
    Meyers MA, Andrade RU, Chokshi HA (1995) Metall Mater Trans A 26:2881CrossRefGoogle Scholar
  55. 55.
    Christian JW, Mahajan S (1995) Prog Mater Sci 39:1CrossRefGoogle Scholar
  56. 56.
    El-Danaf E, Kalidindi SR, Doherty RD (1999) Metall Mater Trans A 30:1223CrossRefGoogle Scholar
  57. 57.
    Randle V (2004) Acta Mater 52:4067CrossRefGoogle Scholar
  58. 58.
    Sutton AP, Balluffi RW (1996) Interfaces in crystalline materials. Oxford Science Publications, Clarendon Press, p 305Google Scholar
  59. 59.
    Venables JA (1961) Philos Mag 6:379CrossRefGoogle Scholar
  60. 60.
    Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2002) Nature Mater 1:45CrossRefGoogle Scholar
  61. 61.
    Chen MW, Ma E, Hemker KJ, Sheng HW, Wang YM, Cheng XM (2003) Science 300:1275CrossRefGoogle Scholar
  62. 62.
    Liao XZ, Zhou F, Lavernia EJ, Srinivasan SG, Baskes MI, He DW, Zhu YT (2003) Appl Phys Lett 83:632CrossRefGoogle Scholar
  63. 63.
    Liao XZ, Zhao YH, Srinivasan SG, Zhu YT, Valiev RZ, Gunderov DV (2004) Appl Phys Lett 84:592CrossRefGoogle Scholar
  64. 64.
    Rösner H, Markmann J, Weissmüller J (2004) Phil Mag Lett 84:321CrossRefGoogle Scholar
  65. 65.
    Meyers MA, Murr LE (1978) Acta Metall 26:951CrossRefGoogle Scholar
  66. 66.
    Mahajan S, Pande CS, Imam MA, Rath BB (1997) Acta Mater 45:2633CrossRefGoogle Scholar
  67. 67.
    Li S, Beyerlein IJ, Alexander DJ, Vogel SC (2005) Scripta Mater 52:1099CrossRefGoogle Scholar
  68. 68.
    Li S, Beyerlein IJ, Bourke MAM (2005) Mater Sci Eng A 394:66CrossRefGoogle Scholar
  69. 69.
    Li S, Beyerlein IJ, Necker CT, Alexander DJ, Bourke MA (2004) Acta Mater 52:4859CrossRefGoogle Scholar
  70. 70.
    Agnew SR, Weertman JR (1998) Mater Sci Eng A 242:174CrossRefGoogle Scholar
  71. 71.
    Huang WH, Chang L, Kao PW, Chang CP (2001) Mater Sci Eng A 307:113CrossRefGoogle Scholar
  72. 72.
    Gholinia A, Bate P, Prangnell PB (2002) Acta Mater 50:2121CrossRefGoogle Scholar
  73. 73.
    Gazder AA, Dalla Torre FH, Gu CF, Davies CHJ, Pereloma EV (2006) Mater Sci Eng A 415:126CrossRefGoogle Scholar
  74. 74.
    Ferrasse S, Segal VM, Kalidindi SR, Alford F (2004) Mater Sci and Eng A 368:28CrossRefGoogle Scholar
  75. 75.
    Gubicza J, Balogh L, Hellmig RJ, Estrin Y, Ungár T (2005) Mater Sci Eng A 334: 400–401Google Scholar
  76. 76.
    Cao WQ, Godfrey A, Liu W, Liu Q (2003) Mater Sci Eng A 360:420CrossRefGoogle Scholar
  77. 77.
    Li S, Bourke MAM, Beyerlein IJ, Alexander DJ, Clausen B (2004) Mater Sci Eng A 382:217CrossRefGoogle Scholar
  78. 78.
    Shih MH, Yu CY, Kao PW, Chang CP (2001) Scripta Mater 45:793CrossRefGoogle Scholar
  79. 79.
    Wang YM, Ma E (2003) Appl Phys Lett 83:3165CrossRefGoogle Scholar
  80. 80.
    Haouaoui M, Karaman I, Maier HJ, Hartwig KT (2004) Metall Mater Trans A 35:2935CrossRefGoogle Scholar
  81. 81.
    Wang JT, Du ZZ, Kang F, Chen G (2006) Mater Sci For 663:503–504Google Scholar
  82. 82.
    Krishanaiah A, Chakkingal U, Venugopal P (2006) Mater Sci For 733:503–504Google Scholar
  83. 83.
    Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) J Mater Res 17:5CrossRefGoogle Scholar
  84. 84.
    Maier HJ, Gabor P, Gupta N, Karaman I, Haouaoui M (2006) Internat J.Fatigue 28:243CrossRefGoogle Scholar
  85. 85.
    Dalla Torre FH, Pereloma EV, Davies CHJ (2006) Acta Mater 54:1135CrossRefGoogle Scholar
  86. 86.
    Hart EW (1967) Acta Metall 15:351CrossRefGoogle Scholar
  87. 87.
    Valiev RZ (2003) Adv Eng Mater 5:296CrossRefGoogle Scholar
  88. 88.
    Vinogradov A, Ishida T, Kitagawa K, Kopylov VI (2005) Acta Mater 53:2181CrossRefGoogle Scholar
  89. 89.
    Dalla Torre FH, Van Swygenhoven H, Victoria M (2002) Acta Mater 50:3957CrossRefGoogle Scholar
  90. 90.
    Hollang L, Thiele E, Holste C, Brunner D (2006) Mater Sci Eng A 424:138CrossRefGoogle Scholar
  91. 91.
    Zehetbauer M, Seumer V (1993) Acta Metall Mater 41:577CrossRefGoogle Scholar
  92. 92.
    Wei Q, Cheng S, Ramesh KT, Ma E (2004) Mater Sci Eng 381:71CrossRefGoogle Scholar
  93. 93.
    Wang YM, Ma E (2004) Appl Phys Lett 85:2750CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Florian H. Dalla Torre
    • 1
    Email author
  • Azdiar A. Gazder
    • 2
    • 3
  • Elena V. Pereloma
    • 2
    • 3
  • Christopher H. J. Davies
    • 2
    • 3
  1. 1.Laboratory of Metal Physics and TechnologyDepartment of MaterialsZurichSwitzerland
  2. 2.Department of Materials EngineeringMonash UniversityClaytonAustralia
  3. 3.Victorian Centre for Advanced Materials ManufacturingBelmontAustralia

Personalised recommendations