Advertisement

Journal of Materials Science

, Volume 42, Issue 8, pp 2735–2744 | Cite as

Effect of hot pressing time and temperature on the microstructure and mechanical properties of ZrB2–SiC

  • Alireza RezaieEmail author
  • William G. Fahrenholtz
  • Gregory E. Hilmas
Article

Abstract

Structure–property relations were examined for ZrB2 containing 30 volume percent SiC particulates. Two grades of ZrB2 with initial particle sizes of 2 and 6 μm were used. Billets of ZrB2–SiC were produced by hot pressing at 1850, 1950 or 2050 °C for 45 min. In addition, the material prepared from ZrB2 with an initial particle size of 2 μm was hot pressed at 2050 °C for 90 and 180 min. Microstructures and mechanical properties were characterized to determine the effects of the initial particle size, hot pressing time, and hot pressing temperature on the final grain size and morphology. The average grain size of the ZrB2 phase ranged from 2.2 to 4.7 μm. Similarly, the average grain size of the SiC phase ranged from 1.2 to 2.7 μm. Hardness and modulus of elasticity were not affected by the processing conditions with average values of 22 and 505 GPa, respectively. However, flexural strength decreased as grain size increased from a maximum of ∼1050 MPa for the finest grain sizes to ∼700 MPa for the largest grain sizes. Analysis suggested that the strength of ZrB2–SiC was limited by the size of the SiC inclusions in the ZrB2 matrix.

Keywords

Fracture Toughness Crack Path True Density Submerged Entry Nozzle Crack Deflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the National Science Foundation on Grant DMR-0346800. The use of the Advanced Materials Characterization Laboratory at UMR is gratefully acknowledged. In particular, the authors would like to thank Dr. Scott Miller of the AMCL for his assistance.

References

  1. 1.
    Monteverde F, Bellosi A (2004) Adv Eng Mater 6:331CrossRefGoogle Scholar
  2. 2.
    Kolodziej P. Aerothermal performance constraints for hypervelocity small radius unswept leading edges and nosetips. NASA Technical Memorandum 1122204Google Scholar
  3. 3.
    Walker SP, Sullivan BJ (2003) Paper AIAA-2003-6915. Published in the proceedings of the 12th AIAA international space planes and hypersonic systems and technologies conference, American Institute of Aeronautics and Astronautics, Norfolk, VA, December 15–19Google Scholar
  4. 4.
    Levine SR, Opila EJ, Halbig MC, Kiser JD, Singh M, Salem JA (2002) J Eur Ceram Soc 22:2757CrossRefGoogle Scholar
  5. 5.
    Chamberlain AL, Fahrenholtz WG, Hilmas GE, Ellerby DT (2004) J Am Ceram Soc 87:1170CrossRefGoogle Scholar
  6. 6.
    Chamberlain AL, Fahrenholtz WG, Hilmas GE, Ellerby DT (2004) Key Eng Mater 493:264–268Google Scholar
  7. 7.
    Van Wie DM, Drewry DG Jr, King DE, Hudson CM (2004) J Mater Sci 39:5915CrossRefGoogle Scholar
  8. 8.
    Monteverde F, Bellosi A (2003) J Electrochem Soc 150:B552CrossRefGoogle Scholar
  9. 9.
    Monteverde F, Bellosi A, Guicciardi S (2002) J Eur Ceram Soc 22:279CrossRefGoogle Scholar
  10. 10.
    Rieck U, Bolz J, Muller-Wiesner D (1995) Int J Mater Prod Tec 10:303Google Scholar
  11. 11.
    Kochendorfer R. International symposium for light weight structures proceedings, ESTEC, Noordwijk, The Netherland, 25–27 March, 1992 (ESA SP-336, October 1992), p 7Google Scholar
  12. 12.
    Fahrenholtz WG, Hilmas GE, Chamberlain AL, Zimmermann JW (2004) J Mater Sci 39:5951CrossRefGoogle Scholar
  13. 13.
    Kuwabara K, Sakamoto S, Kida O, Ishino T, Kodama T, Nakajima H, Ito T, Hirakawa Y (2005) Proceedings of international conference on refractories, UNITECR’03, Osaka, Japan, p 302Google Scholar
  14. 14.
    Kinoshita S, Yoshimasa Y, Ono Y (2003) Proceedings of international conference on refractories, UNITECR’03, Osaka, Japan, p 205Google Scholar
  15. 15.
    Prietzel S, Hunold K, Potscke J, Kross U (2001) Proceedings of international conference on refractories, UNITECR’01, Cancun, Mexico, p 983Google Scholar
  16. 16.
    Kaji N, Shikano H, Tanaka I (1992) Taikabutsu Overseas 14:39Google Scholar
  17. 17.
    Norasetthekul S, Eubank PT, Bradley WL, Bozkurt B, Stucker B (1999) J Mater Sci 34:1261CrossRefGoogle Scholar
  18. 18.
    Upadhya K, Yang J-M, Hoffman WP (1997) Am Ceram Soc Bull 58:51Google Scholar
  19. 19.
    Mroz C (1994) Am Ceram Soc Bull 73:141Google Scholar
  20. 20.
    Zhang G-J, Deng Z-Y, Kondo N, Yang J-F, Ohji T (2000) J Am Ceram Soc 83:2330CrossRefGoogle Scholar
  21. 21.
    Goldstein A, Gefen Y, Goldenberg A (2001) J Am Ceram Soc 84:642CrossRefGoogle Scholar
  22. 22.
    Zhang GJ, Ando M, Yang JF, Ohji T, Kanzaki S (2004) J Eur Ceram Soc 24:171CrossRefGoogle Scholar
  23. 23.
    Nishida A, Shimamura T, Kohtoku Y (1990) J Ceram Soc Jpn 98:412CrossRefGoogle Scholar
  24. 24.
    O YT, Koo JB, Hong KJ, Park JS, Shin DC (2004) Mater Sci Eng A 374:191CrossRefGoogle Scholar
  25. 25.
    Koyama T, Nishiyama A, Niihara K (1994) J Mater Sci 29:3949CrossRefGoogle Scholar
  26. 26.
    Mishra SK, Das SK, Ray AK, Ramachandrarao P (2002) J Am Ceram Soc 85:2846CrossRefGoogle Scholar
  27. 27.
    ASTM C 1259-01 (2005) ASTM book of standards. ASTM International, West Conshohocken, PAGoogle Scholar
  28. 28.
    ASTM C 1161-02c (2005) ASTM book of standards. ASTM International, West Conshohocken, PAGoogle Scholar
  29. 29.
    Chantikul P, Anstis GR, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64:539CrossRefGoogle Scholar
  30. 30.
    Wachtman JB (1996) Mechanical properties of ceramics. John Wiley & Sons Inc., New YorkGoogle Scholar
  31. 31.
    Chamberlain AL, Fahrenholtz WG, Hilmas GE (2006) J Am Ceram Soc 89:450Google Scholar
  32. 32.
    Cutler RA (1991) In: Schneider SJ Jr (ed) Ceramics and glasses, engineered materials handbook, vol 4. ASM International, Materials Park, OH, p 787Google Scholar
  33. 33.
    Shaffer PTB (1991) In: Schneider SJ Jr (ed) Ceramics and glasses, engineered materials handbook, vol 4. ASM International, Materials Park, OH, p 804Google Scholar
  34. 34.
    Ohji T, Jeong Y-K, Chao Y-H, Niihara K (1998) J Am Ceram Soc 81:1453CrossRefGoogle Scholar
  35. 35.
    Wiederhorn SM (1984) Annu Rev Mater Sci 14:374CrossRefGoogle Scholar
  36. 36.
    Ruhle M, Dalgleish BG, Evans AG (1987) Scr Metall Mater 21:681CrossRefGoogle Scholar
  37. 37.
    Rice RW (1981) Ceram Eng Sci Proc 2:661CrossRefGoogle Scholar
  38. 38.
    Rice RW (1985) Ceram Eng Sci Proc 6:589CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Alireza Rezaie
    • 1
    • 2
    Email author
  • William G. Fahrenholtz
    • 1
  • Gregory E. Hilmas
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of Missouri-RollaRollaUSA
  2. 2.Vesuvius ResearchPittsburghUSA

Personalised recommendations