Advertisement

Journal of Materials Science

, Volume 42, Issue 15, pp 6325–6330 | Cite as

Spatially resolved luminescence properties of ZnO tetrapods

  • Cordt ZollfrankEmail author
  • Carlos R. Rambo
  • Miroslaw Batentschuk
  • Peter Greil
Article

Abstract

ZnO tetrapods were prepared by Zn-vapour deposition at 740 °C in Argon and subsequent oxidation in air for 1–30 min. The photoluminescence (PL) and cathodoluminescence (CL) spectra were measured from ZnO particles collected at various distances from the Zn source representing decreasing dimensions. The ZnO tetrapods showed a green emission centred at 516 nm (2.40 eV) band and the exciton emission at 387 nm (3.20 eV). The measured data suggested that the green emission is strongly increased for particle sizes below 500 nm, whereas the exciton emission is dominant for particle size larger than 500 nm. Spatially resolved CL-measurement on individual tetrapod legs showed, that the green emission increases with decreasing ZnO leg diameter. To our knowledge, the local CL spectroscopic measurements were correlated with the dimensions of the individual ZnO tetrapods for the first time.

Keywords

Green Emission Sampling Distance Exciton Emission Strong Exciton Emission Short Wavelength Device 

Notes

Acknowledgements

The authors are grateful to E. Völkl for the technical assistance on the CL-measurements. Financial support of the German Science Foundation (DFG) and the University of Erlangen-Nuremberg is gratefully acknowledged. C.R. Rambo thanks CNPq-Brazil for the financial support.

References

  1. 1.
    Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P (2001) Adv Mater 13:113CrossRefGoogle Scholar
  2. 2.
    Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Science 292:1897CrossRefGoogle Scholar
  3. 3.
    Reynolds DC, Look DC, Jogai B (1996) Solid State Comm 99:873CrossRefGoogle Scholar
  4. 4.
    Xu C, Kim M, Chun J, Kim DE (2005) Nanotechnology 16:104Google Scholar
  5. 5.
    Lyu SC, Zhang Y, Ruh H, Lee HJ, Shim HW, Suh EK, Lee CJ (2002) Chem Phys Lett 363:134CrossRefGoogle Scholar
  6. 6.
    Zhang J, Yu W, Zhang L (2002) Phys Lett A 299:276CrossRefGoogle Scholar
  7. 7.
    Chen Z, Shan Z, Cao MS, Lu L, Mao SX (2004) Nanotechnology 15:365CrossRefGoogle Scholar
  8. 8.
    Tseng YK, Huang CJ, Cheng HM, Lin IN, Liu KS, Chen IC (2003) Adv Funct Mater 13:811CrossRefGoogle Scholar
  9. 9.
    Kong XY, Ding Y, Yang R, Wang ZL (2004) Science 27:1348CrossRefGoogle Scholar
  10. 10.
    Leung YH, Djurisic AB, Gao J, Xie MH, Chan WK (2004) Chem Phys Lett 385:155CrossRefGoogle Scholar
  11. 11.
    Wan Q, Song ZT, Liu WL, Lin CL, Wang TH (2004) Nanotechnology 15:559CrossRefGoogle Scholar
  12. 12.
    Dai Y, Zhang Y, Bai YQ, Wang ZL (2003) Chem Phys Lett 375:96CrossRefGoogle Scholar
  13. 13.
    Park J, Choi HH, Siebein K, Singh RK (2003) J Cryst Growth 258:342CrossRefGoogle Scholar
  14. 14.
    Vayssieres L (2003) Adv Mater 15:464CrossRefGoogle Scholar
  15. 15.
    Govender K, Boyle D, Kenway PB, O’Brien P (2004) J Mater Chem 16:2575CrossRefGoogle Scholar
  16. 16.
    Yan H, He R, Pham J, Yang P (2003) Adv Mater 15:402CrossRefGoogle Scholar
  17. 17.
    Dai Y, Zhang Y, Li QK, Nan CW (2002) Chem Phys Lett 358:83CrossRefGoogle Scholar
  18. 18.
    Fan HJ, Scholz R, Kolb FM, Zacharias M, Gösele U (2004) Solid State Comm 130:517CrossRefGoogle Scholar
  19. 19.
    Gao T, Huang Y, Wang T (2004) J Phys Cond Mater 16:115Google Scholar
  20. 20.
    Yu WD, Li XM, Gao XD (2004) Chem Phys Lett 390:296CrossRefGoogle Scholar
  21. 21.
    Dai Y, Zhang Y, Li QK, Nan CW (2002) Chem Phys Lett 375:83CrossRefGoogle Scholar
  22. 22.
    Van Dijken A, Meulenkamp EA, Vanmaekelbergh D, Meijerink A (2000) J Lum 87–89:454CrossRefGoogle Scholar
  23. 23.
    Zhong H, Wang J, Pan M, Wang S, Li Z, Xu W, Chen X, Lu W (2006) Mat Chem Phys 97:390CrossRefGoogle Scholar
  24. 24.
    Li H, Hackenschmied P, Epelbaum B, Batentschuk M (2002) Mat Sci Eng B Solids B94:32CrossRefGoogle Scholar
  25. 25.
    Urbieta A, Fernández P, Piqueras J, Hardalov C, Sekiguchi T (2001) J Phys D Appl Phys 34:2945CrossRefGoogle Scholar
  26. 26.
    Fernández P, García JA, Remón A, Piqueras J, Muñoz V, Triboulet R (1998) Semicond Sci Tech 13:410CrossRefGoogle Scholar
  27. 27.
    Saito N, Haneda H, Koumoto K (2004) Microelectr J 35:349CrossRefGoogle Scholar
  28. 28.
    Lorenz M, Lenzer J, Kaidshev EM, Hochmuth H, Grundmann M (2004) Ann Phys (Leipzig) 1–2:39CrossRefGoogle Scholar
  29. 29.
    Grym J, Fernández P, Piqueras J (2005) Nanotechnology 16:931CrossRefGoogle Scholar
  30. 30.
    Wu JJ, Liu SC (2002) Adv Mater 14:215CrossRefGoogle Scholar
  31. 31.
    Lima SAM, Sigoli FA, Jafelicci M Jr, Davolos MR (2001) Int J Inorg Mat 3:749CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Cordt Zollfrank
    • 1
    Email author
  • Carlos R. Rambo
    • 2
  • Miroslaw Batentschuk
    • 3
  • Peter Greil
    • 1
  1. 1.Department of Materials Science and Engineering, Glass and CeramicsUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Graduate Program on Materials Science and Engineering – PGMAT, Department of Chemical Engineering – EQAFederal University of Santa CatarinaFlorianopolisBrazil
  3. 3.Department of Materials Science and Engineering, Electrical Engineering MaterialsUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations