Journal of Materials Science

, Volume 42, Issue 16, pp 6982–6988 | Cite as

Effect of 80 MeV oxygen ion beam irradiation on the properties of CdTe thin films

  • R. SathyamoorthyEmail author
  • S. Chandramohan
  • P. Sudhagar
  • D. Kanjilal
  • D. Kabiraj
  • K. Asokan
  • K. P. Vijayakumar


Polycrystalline CdTe thin films were irradiated with 80 MeV oxygen (O6+) ions for various fluences and its effect on the composition, structure, surface topography and optical properties have been investigated. The as-grown films are found to be slightly Te-rich in composition and there is no significant change in the composition after irradiation. X-ray diffraction analysis shows a high degree of crystallite orientation along the (111) plane of cubic phase CdTe. Upon irradiation a large decrease in intensity of the (111) plane and a small shift in the peak position has been resulted. The shift in the peak position is correlated with the change in the residual stress. The surface roughness of the films get increased after irradiation. A decrease in the grain size was observed after irradiation due to ion-induced recrystallization. The optical band gap energy decreased from 1.53 eV for as-grown film to 1.46 eV upon irradiation. The photoluminescence (PL) spectrum is dominated by the defect band and the effect of irradiation has been discussed and correlated with the observed change in the XRD peak position and optical band gap.


Residual Stress CdTe Film Defect Band Phonon Replica Irradiate Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Inter University Accelerator Centre (IUAC), New Delhi, India through the Project UFUP 34319. The authors cordially acknowledge the help extended by technical staff of Pelletron group during the irradiation experiment. The authors wish to acknowledge Mr. Ambuj Tripathi, Scientist, Inter University Accelerator Centre, New Delhi for his support to carryout the AFM measurements and Dr. D. M. Phase, Scientist and Mr. Vinay Ahire, Junior engineer, UGC-DAE Consortium for Scientific Research, Indore Centre for EDA analysis. One of the authors (RS) gratefully acknowledges University Grants Commission (UGC), New Delhi for awarding UGC-Research Award [Project No. F-30-1/2004 (SA-II)].


  1. 1.
    Leal FF, Ferreira SO, Menezes-Sobrinho IL, Faria TE (2005) J Phys Condens Matter 17:27CrossRefGoogle Scholar
  2. 2.
    Cavallini A, Fraboni B, Dusi W, Hage-Ali M, Siffert P (2001) J Appl Phys 89:4664CrossRefGoogle Scholar
  3. 3.
    Rams J, Sochinskii NV, Munoz V, Cabrera JM (2000) Appl Phys A Mater Sci Process 71:277CrossRefGoogle Scholar
  4. 4.
    Oladeji IO, Chow L, Ferekides CS, Viswanathan V, Zhao Z (2000) Sol Energy Mater Sol Cells 61:203CrossRefGoogle Scholar
  5. 5.
    Aguilar M, Oliva AI, Castro-Rodriguez R, Pena JL (1997) J Mater Sci Mater Electron 8:103CrossRefGoogle Scholar
  6. 6.
    Wu X, Keane JC, Dhere RG, Dettart C, Albin DS, Duda A, Gessert TA, Asher S, Levi DH, Sheldon P (2001) In: Proc of the 17th European Photovoltaic Solar Energy Conf., Munich, Germany, p 995Google Scholar
  7. 7.
    Vamsi krishna K, Dutta V (2004) J Appl Phys 96:3962CrossRefGoogle Scholar
  8. 8.
    Schattat B, Bolse W, Elsanousi A, Renz T (2005) Nucl Instrum Methods Phys Res B 230:240CrossRefGoogle Scholar
  9. 9.
    Senthilarasu S, Sathyamoorthy R, Lalitha S, Avasthi DK (2005) Thin Solid Films 490:177CrossRefGoogle Scholar
  10. 10.
    Avasthi DK, Assmann W, Nolte H, Mieskes HD, Huber H, Subramaniyan ET, Tripathi A, Ghosh S (1999) Nucl Instrum Methods Phys Res B 156:143CrossRefGoogle Scholar
  11. 11.
    Sreekumar R, Ratheesh Kumar PM, Sudha Kartha C, Vijayakumar KP, Kabiraj D, Khan SA, Avasthi DK (2006) Nucl Instrum Methods Phys Res B 244:190CrossRefGoogle Scholar
  12. 12.
    Romeo A, Batzner DL, Zogg H, Tiwari AN (2001) Mat Res Soc Symp Proc 668:H3.3.1CrossRefGoogle Scholar
  13. 13.
    Batzner DL, Romeo A, Terheggen M, Dobeli M, Zogg H, Tiwari AN (2004) Thin Solid Films 451–452:536CrossRefGoogle Scholar
  14. 14.
    Ratheesh Kumar PM, Sudha Kartha C, Vijaya Kumar KP, Singh F, Avasthi DK, Abe T, Kashiwaba Y, Okram GS, Kumar M, Kumar S (2005) J Appl Phys 97:013509CrossRefGoogle Scholar
  15. 15.
    Balamurugan B, Mehta BR, Avasthi DK, Singh F, Arora AK, Rajalakshmi M, Raghavan G, Tyagi AK, Shivaprasad SM (2002) J Appl Phys 92:3304CrossRefGoogle Scholar
  16. 16.
    Kamboj MS, Kaur G, Thangaraj R, Avasthi DK (2002) J Phys D Appl Phys 35:477CrossRefGoogle Scholar
  17. 17.
    Ratheesh Kumar PM, John TT, Sudha Kartha C, Vijayakumar KP (2006) Nucl Instrum Methods Phys Res B 244:171CrossRefGoogle Scholar
  18. 18.
    Jayavel P, Arokiaraj J, Soga T (2002) Semicond Sci Technol 17:969CrossRefGoogle Scholar
  19. 19.
    Chaudhary YS, Khan SA, Shrivastava R, Satsangi VR, Prakash S, Avasthi DK, Dass S (2004) Nucl Instrum Methods Phys Res B 225:291CrossRefGoogle Scholar
  20. 20.
    Ohring M (1992) In: The materials science of thin film. Academic Press, San DiegoGoogle Scholar
  21. 21.
    Mountinho HR, Al-Jassim MM, Abufoltuh FA, Levi DH, Dippo PC, Dhere RG, Kazmerski LL (1997) NREL/CP-523–22944Google Scholar
  22. 22.
    Bhattacharya B, Carter MJ (1996) Thin Solid Films 288:176CrossRefGoogle Scholar
  23. 23.
    Rawat RS, Arun P, Vedeshwar AG, Lee P, Lee S (2004) J Appl Phys 95:7725CrossRefGoogle Scholar
  24. 24.
    Senthil K, Mangalaraj D, Narayandass SAK, Kesavamoorthy R, Reddy GLN, Sundaravel B (2001) Physica B 304:175CrossRefGoogle Scholar
  25. 25.
    Contreras-Puente G, Vigil-Galan O, Vidal-Varramendi J, Cruz-Gandarilla F, Hesiquio-Garduno M, Aguilar-Hernandez J, Cruz-Orea A (2001) Thin Solid Films 387:50CrossRefGoogle Scholar
  26. 26.
    Li K, Wee ATS, Linj J, Tan KL, Zhou L, Li SFY, Feng ZC, Chou HC, Kamra S, Rohatgi A (1997) J Mater Sci Mat Electron 8:125CrossRefGoogle Scholar
  27. 27.
    Narayanan KL, Vijayakumar KP, Nair KGM, Thampi NS (1997) Physica B 240:8CrossRefGoogle Scholar
  28. 28.
    El-Sayed SM (2004) Nucl Instrum Methods Phys Res B 225:535CrossRefGoogle Scholar
  29. 29.
    Bridge CJ, Dawson P, Buckle PD, Ozsan ME (2000) Semicond Sci Technol 15:975CrossRefGoogle Scholar
  30. 30.
    Seto S, Yamada S, Suzuki K (2001) Sol Energy Mater Sol Cells 67:167CrossRefGoogle Scholar
  31. 31.
    Ahmad-Bitar R, Moutinho H, Abulfotuh F, Kazmerski L (1995) Renew Energy 6:553CrossRefGoogle Scholar
  32. 32.
    Aguilar-Hernandez J, Contreras-Puente G, Vidal-Larramendi J, Vigil-Galan O (2003) Thin Solid Films 426:132CrossRefGoogle Scholar
  33. 33.
    Mathew X, Arizmendi JR, Campos J, Sebastian PJ, Mathews NR, Jimenez CR, Jimenez MG, Silva-Gonzales R, Hernandez-Torres ME, Dhere R (2001) Sol Energy Mater Sol Cells 70:379CrossRefGoogle Scholar
  34. 34.
    Ahmad-Bitar R, Arafah DE (1998) Sol Energy Mater Sol Cells 51:83CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • R. Sathyamoorthy
    • 1
    Email author
  • S. Chandramohan
    • 1
  • P. Sudhagar
    • 1
  • D. Kanjilal
    • 2
  • D. Kabiraj
    • 2
  • K. Asokan
    • 2
  • K. P. Vijayakumar
    • 3
  1. 1.PG and Research Department of PhysicsKongunadu Arts & Science CollegeCoimbatoreIndia
  2. 2.Inter University Accelerator Centre (IUAC)New DelhiIndia
  3. 3.Department of PhysicsCochin University of Science and TechnologyCochinIndia

Personalised recommendations