Journal of Materials Science

, Volume 42, Issue 8, pp 2557–2564 | Cite as

Density gradients in aluminium foams: characterisation by computed tomography and measurements of the effective thermal conductivity

  • E. Solórzano
  • M. A. Rodríguez-Pérez
  • J. A. Reglero
  • J. A. de Saja
Article

Abstract

The density gradients present in several aluminium foams, produced by the powder metallurgical route, have been analysed by using computed tomography and by measuring the effective thermal conductivity (λ). The method used to measure λ, Transient Plane Source (TPS) technique, allows obtaining values of the local thermal conductivity, i.e. conductivity of a localised zone within the sample. These values have been related to the density of the measured zone, which was obtained from the computed tomography experiments. A power law relationship between local effective thermal conductivity and local density has been obtained.

Keywords

Foam Effective Thermal Conductivity Aluminium Foam Metal Foam Foam Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful to the IFAM in Bremen (D. Lehmhus) which supplied the materials of this work and to the Hospitals “Clínico Universitario” (Mr. César P. Zapata) and “Pío Río Hortega” (Mr. Ignacio Hernando), placed in Valladolid, which allowed us working with their helical scanners.

References

  1. 1.
    Schäffler P, Rajner W (2003) In: Banhart J, Fleck N, Mortensen A (eds) Proceedings of the 3rd international conference on cellular metals and metal foaming technology, Berlin, June 2003. Verlag Mit Publishing, Bremen, p 43Google Scholar
  2. 2.
    Körner C, Hirschmann M, Lamm M, Singer RF (2003) In: Banhart J, Fleck N, Mortensen A (eds) Proceedings of the 3rd international conference on cellular metals and metal foaming technology, Berlin, June 2003. Verlag Mit Publishing, Bremen, p 209Google Scholar
  3. 3.
    Olurin OB, Arnold M, Körner C, Singer RF (2002) Mater Sci Eng A328:334Google Scholar
  4. 4.
    Bastawros A-F, Bart-Smith H, Evans AG (2000) J Mech Phys Solids 48(Issue2):301CrossRefGoogle Scholar
  5. 5.
    Kennedy AR, Asavavisitchai S (2004) Scripta Mater 50:115CrossRefGoogle Scholar
  6. 6.
    Zhou J, Shrotriya P, Soboyejo WO (2004) Mech Mater 36(8):781CrossRefGoogle Scholar
  7. 7.
    Öchsner A, Lamprecht K (2003) Mech Res Commun 30(6):573CrossRefGoogle Scholar
  8. 8.
    Queheillalt DT, Sypeck DJ, Wadley HNG (2002) Mater Sci Eng 323(1–2):138Google Scholar
  9. 9.
    Babcsán N, Mészáros I, Hegman N (2003) Mat-wiss u. Werkstofftech 34:394Google Scholar
  10. 10.
    Boemusma K, Poulikakos D (2001) Int J Heat Mass Transf 44:827CrossRefGoogle Scholar
  11. 11.
    Abramenko AN et al (1999) J Eng Phys Thermophys 72:369Google Scholar
  12. 12.
    Paek JW, Kang BH, Hyun JM (2000) Int J Thermophys 21(2):453CrossRefGoogle Scholar
  13. 13.
    Lu TJ, Chen C (1999) Acta Mater 47(n.5):1469CrossRefGoogle Scholar
  14. 14.
    Seo YK, Kang BH, Kim J-H (2001) Int J Heat Mass Transf 44:1451CrossRefGoogle Scholar
  15. 15.
    Phanikumar MS, Mahajan RL (2002) Int J Heat Mass Transf 45:3781CrossRefGoogle Scholar
  16. 16.
    Collishaw PG, Evans JRG (1994) J Mater Sci 29:486CrossRefGoogle Scholar
  17. 17.
    Brink J, Heiken JP, Waug G et al (1994) Radiographies 14:887Google Scholar
  18. 18.
    Majumdar S et al (1995) Bone 14:417CrossRefGoogle Scholar
  19. 19.
    Long DT, King MA, Sheehan J (1992) Med Phys 19:483CrossRefGoogle Scholar
  20. 20.
    http://www.npl.co.uk/thermal/ctm/ as on 15 July 2005Google Scholar
  21. 21.
    Bouguerra A, Aït-Mokhtar A, Amiri O, Diop MB (2001) Int Commun Heat Mass Transf 28:1065CrossRefGoogle Scholar
  22. 22.
    Saxena NS et al (1999) Eur Poly J 35:1687CrossRefGoogle Scholar
  23. 23.
    Mangal R et al (2003) Mater Sci Eng A339:281Google Scholar
  24. 24.
    Almanza O, Rodriguez-Pérez MA, De Saja JA (2004) J Polymer Sci Part B Polymer Phys 42:1226CrossRefGoogle Scholar
  25. 25.
    Reglero JA, Rodríguez-Perez MA et al (2003) In: Jerz J, Sêbo P, Zemánková M (eds) Proceedings of the international conference advanced metallic materials, Slovakia, November 2003. Slovak Academy of Sciences, Bratislava, p 253Google Scholar
  26. 26.
    Reglero JA, Rodríguez-Perez MA et al (2003) In: Banhart J, Fleck N, Mortensen A (eds) Proceedings of the 3th international conference on cellular metals and metal foaming technology, Berlin, June 2003. Verlag Mit Publishing, Bremen, p 499Google Scholar
  27. 27.
    Log T, Gustafsson SE (1995) Fire Mater 19(1):43CrossRefGoogle Scholar
  28. 28.
    Gustavsson M, Karawacki E, Gustafsson SE (1994) Rev Sci Instruments 65:3856CrossRefGoogle Scholar
  29. 29.
    Ashby MF, Evans A, Fleck N, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal foams: a design guide. Butterworth-Heinemann, Burlington, p 47Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • E. Solórzano
    • 1
  • M. A. Rodríguez-Pérez
    • 1
  • J. A. Reglero
    • 2
  • J. A. de Saja
    • 1
  1. 1.Dpto Física de la Materia Condensada, Facultad de CienciasUniversidad de ValladolidValladolidSpain
  2. 2.Index. Servicios de IngenieríaMiranda de EbroSpain

Personalised recommendations