Journal of Materials Science

, Volume 42, Issue 8, pp 2551–2556 | Cite as

Synthesis, crystallographic characterization and ionic conductivity of iron substituted sodium zirconium phosphate Na1.2Zr1.8Fe0.2(PO4)3

  • O. P. ShrivastavaEmail author
  • Narendra Kumar
  • Rashmi Chourasia

Sodium zirconium phosphate NaZr2P3O12 (hereafter NZP) crystallizes in rhombohedral (hexagonal) symmetry with the space group R-3c. The NZP-related phase of synthetic iron substituted NZP has been prepared by partial substitution on zirconium site by Fe(III). The material has been synthesized by sintering the finely powdered oxide mixture in a muffle furnace at 1,050 °C. The polycrystalline phase of Na1.2Zr1.8Fe0.2(PO4)3 has been characterized by its typical powder diffraction pattern. The powder diffraction data of 3,000 points have been subjected to general structural analysis system (GSAS) software to arrive at a satisfactory structural fit with Rp = 0.0623 and Rwp = 0.0915. The following unit cell parameters have been calculated: a = b = 8.83498(18) Å, c = 22.7821(8) Å and α = β = 90.0° γ = 120.0°. The structure of NZP consists of ZrO6 octahedra and PO4 tetrahedra linked by the corners to form a three-dimensional network. Each phosphate group is on a two-fold rotation axis and is linked to four ZrO6 octahedra. Each zirconium octahedron lies on a threefold rotation axis and is connected to six PO4 tetrahedra. AC conductivity of the solid solution has been measured between 303 and 773 K. The material exhibits temperature-dependent enhancement of ionic conduction by ≈400 times at elevated temperatures. The activation energies show significant change in slope at 1,000/T = 2.23(448 K).


Thermal Activation Energy Polyvalent Cation Good Ionic Conductor General Structural Analysis System Sodium Zirconium Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge the help of Dr Ranveer Kumar Department of Physics, Dr. H.S. Gour University for electrical measurements on the samples. The authors thank the University Grant Commission, New Delhi for funding the major project no. F-12-137/2001(SR-1) and to DST, New Delhi for providing X-ray facility at Jammu University.


  1. 1.
    Scheetz BE, Agrawal DK, Brevel E, Roy R (1994) Sodium zirconium phosphate (NZP) as a host structure for Nuclear waste immobilization: a review. Waste Management 14(6):489CrossRefGoogle Scholar
  2. 2.
    Breval E, Agrawal DK (1995) Brit Ceram Trans 94:27Google Scholar
  3. 3.
    Orlova AI, Pet’kov VI, Skiba OV (1997) In: International conference on future nuclear system, Global ‘97, Yokohama Proceedings, vol 2. p 1253Google Scholar
  4. 4.
    Hazen RM, Prewitt CT (1977) Am Mineral 62:309Google Scholar
  5. 5.
    Govindan Kutty KV, Asuvathraman R, Sridhran R (1998) J Mat Sci 33:4007CrossRefGoogle Scholar
  6. 6.
    Kohler J, Imanaka N, Adachi G (1999) Chem Mater 10:1767Google Scholar
  7. 7.
    Verissimo Carla MS, Garrido Francisco L, Oswaldo A, Paloma C, Ana M-J, Iglesias Juan E, Rojo Jose M (1997) Solid State Ionics 100:127CrossRefGoogle Scholar
  8. 8.
    Roy R, Agrawal DK, Alammo J, Roy RA (1984) Mat Res Bull 19:471CrossRefGoogle Scholar
  9. 9.
    Hirose Y, Fukasawa T, Agrawal DK, Scheetz BE, Nageswaran R, Curtis JA, Limaye SY (1999) In: WM 1999 conference Google Scholar
  10. 10.
    Shannon RD (1976) Acta Crystallogr A 32:751CrossRefGoogle Scholar
  11. 11.
    Goodenough JB, Hong HYP, Kafalas JA (1976) Mat Res Bull 11:203CrossRefGoogle Scholar
  12. 12.
    Hagman L, Kierkegaard P (1968) Acta Chem Stand 22:1822CrossRefGoogle Scholar
  13. 13.
    Hong HYP (1976) Mat Res Bull 11:173CrossRefGoogle Scholar
  14. 14.
    Pet’kov VI, Orlova AI, Kazantsev GN, Samoilov SG, Spiridonova ML (2001) J Therm Anal Calorimetr 66:623CrossRefGoogle Scholar
  15. 15.
    Buvaneswaria G, Govindan Kutty KV, Varadaraju UV (2004) Mat Res Bull 39:475CrossRefGoogle Scholar
  16. 16.
    JCPDS Powder diffraction data file no. 71-0959 (2000) Compiled by International Center for Diffraction Data USA Google Scholar
  17. 17.
    Larson AC, Von Dreele RB, General structure analysis system technical manual, LANSCE, MS-H805, Los Alamos National Laboratory, USAGoogle Scholar
  18. 18.
    Furberg S (1955) Acta Chem Scand 9:1557CrossRefGoogle Scholar
  19. 19.
    Cruickshank DWJ (1964) Acta Cryst 17:671CrossRefGoogle Scholar
  20. 20.
    Nord AG, Kiekegaard P (1968) Acta Chem Scand 22:1465CrossRefGoogle Scholar
  21. 21.
    West AR (1998) Solid state chemistry and its application, John Willey, New York, pp 484–487Google Scholar
  22. 22.
    Breval E, McKinstry HA, Agrawal DK (1994) Br Ceram Trans 93(6):239Google Scholar
  23. 23.
    Nowick AS, LeeWK (1989) In: Laksar AL, Chandra S (eds) Superionic solids and solid electrolytes, recent trends. Academic press, Boston pp 381–405Google Scholar
  24. 24.
    Le Meins JM, Bohnke O, Gourbion G (1998) Solid State Ionics 111:67CrossRefGoogle Scholar
  25. 25.
    Tilement O, Angenaut J, Couturier JC, Quarton M (1991) Solid State Ionics 44:299CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • O. P. Shrivastava
    • 1
    Email author
  • Narendra Kumar
    • 1
  • Rashmi Chourasia
    • 1
  1. 1.Department of ChemistryDr. H. S. Gour UniversitySagarIndia

Personalised recommendations