Advertisement

Journal of Materials Science

, Volume 42, Issue 15, pp 6446–6452 | Cite as

Spatial distribution of pores in lotus-type porous metal

  • Jiang Wan
  • Yanxiang LiEmail author
  • Yuan Liu
Article

Abstract

The spatial distribution of pores in lotus-type porous magnesium has been studied with the second-order characteristics and the nearest-neighbour distance distribution by using statistical analysis methods. The results show that the spatial distribution of pores is short-range ordered. On the basis of the analysis, two structural indices deduced from the variance of nearest-neighbour distance distribution and the standard deviation of local porosity from Dirichlet tessellations were proposed for quantitatively characterizing the pore distribution.

Keywords

Pair Correlation Function Point Pattern Pore Distribution Argon Pressure Bulk Porosity 

Notes

Acknowledgement

Supported by National Key Basic Research and Development Program of China (No.2004CCA05100) and National Natural Science Foundation of China (No.50404002).

References

  1. 1.
    Shapovalov VI (1993) US. Patent No. 5,181,549Google Scholar
  2. 2.
    Nakajima H, Hyun SK, Ohashi K (2001) Colloid Surface A 179:209CrossRefGoogle Scholar
  3. 3.
    Shapovalov VI (1994) Porous metals, MRS Bulletin, 24Google Scholar
  4. 4.
    Higuchi Y, Ohashi Y, Nakajima H (2005) In: Nakajima H, Kanetake N (ed) 4th International conference on porous metals and metal foaming technology, Kyoto, p 47Google Scholar
  5. 5.
    Park C, Nutt SR (1998) In: Porous and cellular materials for structural applications, materials research society symposium, vol 521. Materials Research Society, Pittsburgh PA, p 315Google Scholar
  6. 6.
    Boiko LV (2000) Mater Sci 36:506CrossRefGoogle Scholar
  7. 7.
    Liu Y, Li YX, Zhang HW, Wan J (2005) Rare Metal Mat Eng 34:1128Google Scholar
  8. 8.
    Liu Y, Li YX, Wan J, Zhang HW (2005) Mat Sci Eng A 402:47CrossRefGoogle Scholar
  9. 9.
    Nakajima H, Ikeda T, Hyun SK (2004) Adv Eng Mat 6:377CrossRefGoogle Scholar
  10. 10.
    Pyrz R (1994) Compos Sci Technol 50:197CrossRefGoogle Scholar
  11. 11.
    Schwarz H, Exner HE (1983) J Microsc 129:155CrossRefGoogle Scholar
  12. 12.
    Wray PJ, Richmond O, Morrison HL (1983) Metallography 16:39CrossRefGoogle Scholar
  13. 13.
    Everett RK, Chu JH (1993) J Compos Mater 27:1128CrossRefGoogle Scholar
  14. 14.
    Spitzig WA, Kelly JF, Richmond O (1985) Metallography 18:235CrossRefGoogle Scholar
  15. 15.
    Ohser J, Mücklich F (2000) In: Statistical analysis of microstructures in materials science. John Wiley & Sons, New York, p 270Google Scholar
  16. 16.
    Paradies CJ, Tobin A, Wolla J (1998) In: Porous and cellular materials for structural applications, materials research society symposium, vol 521. Materials Research Society: Pittsburgh PA, p 297Google Scholar
  17. 17.
    Liu Y, Li YX, Zhang HW, Wan J (2005) Acta Metallurgica Sinica 41:886Google Scholar
  18. 18.
    Shapovalov VI (1998) In: Porous and cellular materials for structural applications, materials research society symposium, vol 521. Materials Research Society: Pittsburgh PA, p 281Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Key Laboratory for Advanced Materials Processing TechnologyMinistry of EducationBeijingP.R. China
  2. 2.Department of Mechanical EngineeringTsinghua UniversityBeijingP.R. China

Personalised recommendations