Advertisement

Journal of Materials Science

, Volume 44, Issue 5, pp 1388–1393 | Cite as

Synthesis of a transparent hybrid layer photocatalyst having high rubbing resistance

  • Shuji IchimuraEmail author
  • Hiroshi Ebisu
  • Kazumi Kato
Article
  • 71 Downloads

Abstract

A transparent layer photocatalyst having high rubbing resistance was developed. A high temperature burning process cannot be applied to form transparence layer photocatalysts using a low heat-resistant plastic film. We were able to synthesize the transparence layer photocatalyst having high rubbing resistance by irradiation of the hybrid material consisted of urethane acrylic oligomer and titanium lactate using a high pressure mercury lamp. The layer formed through a hybrid reaction of photo-polymerization of urethane acrylic oligomer and the sol-gel reaction of titanium lactate at relatively low temperature. The layer showed high rubbing resistance and high transparency, and titanium include in it dispersed uniformly. Photocatalytic activity was confirmed by detection of radicals using electron spin resonance (ESR) and was also evaluated by measuring bleaching of methylene blue solution.

Keywords

Electron Spin Resonance Methylene Blue Photocatalytic Activity Ethylene Terephthalate Hybrid Layer 

References

  1. 1.
    Bruner L, Kozak J, Z Elektrochem Angew Phys Chem 17 (1911) 354Google Scholar
  2. 2.
    Fujishima A, Honda K (1972) Nature 238:37CrossRefGoogle Scholar
  3. 3.
    Fujishima A, Honda K (1971) Bull Chem Soc Jpn 44:1148CrossRefGoogle Scholar
  4. 4.
    Hisanaga T, Harada K, Tanaka K (1990) J Photochem Photobiol A: Chem 54:113CrossRefGoogle Scholar
  5. 5.
    Kato K, Tuzuki A, Taoda H, Torii Y, Kato T, Butsugan Y (1994) J Mater Sci 29:5911CrossRefGoogle Scholar
  6. 6.
    Tominaga Y, Yamamura N (2002) United States Patent 6372340Google Scholar
  7. 7.
    Ichimura S, Ebisu H, Kato K (2005) Jpn J Appl Phys 44(7A):5164CrossRefGoogle Scholar
  8. 8.
    Nosaka Y (2003) Photochemistry 34:14 [in Japanese]Google Scholar
  9. 9.
    Nosaka Y, Komori S, Yawata K, Hirakawa T, Nosaka AY (2003) Phys Chem Chem Phys 5:4731CrossRefGoogle Scholar
  10. 10.
    Grela MA, Coronel MEJ, Colussi AJ (1996) J Phys Chem 100:16940CrossRefGoogle Scholar
  11. 11.
    Horikoshi S, Hidaka H, Serpone N (2003) Chem Phys Lett 376:475CrossRefGoogle Scholar
  12. 12.
    Hidaka H, Zhao J, Plzzetti E, Serpone N (1992) J Phys Chem 96:2226CrossRefGoogle Scholar
  13. 13.
    Takami K, Nakasone T, Hashimoto K, Fujishima A (1998) Eng Mater 46(5):102 [in Japanese]Google Scholar
  14. 14.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69CrossRefGoogle Scholar
  15. 15.
    Hirakawa T, Kominami H, Ohtani B, Nosaka Y (2001) J Phys Chem B 105:6993CrossRefGoogle Scholar
  16. 16.
    Poole C (1983) In: Electron spin resonance, 2nd edn. John Wiley & Sons, New York, Chap. 12Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Environmental Technology and Urban PlanningNagoya Institute of Technology, Research and Development of NICHIBAN CO.LTD.Anjo, AichiJapan

Personalised recommendations