Advertisement

Journal of Materials Science

, Volume 42, Issue 4, pp 1336–1342 | Cite as

Negative Poisson’s ratio structures produced from zirconia and nickel using co-extrusion

  • Aaron T. CrummEmail author
  • John W. Halloran
Article

Abstract

Objects with a complex structure designed to display negative Poisson’s ratio were produced from zirconia ceramic and from metallic nickel. The objects were arrays of repeat units with designed elastic behavior. The technique of microfabrication by coextrusion, based on oxide powders blended with thermoplastics, was used to replicate and miniaturize single 38 mm repeat unit to obtain an array of 64 units, 400 μm in size. The metallic nickel objects were produced fabricating nickel oxide, followed by sintering in a reducing atmosphere to yield dense metallic nickel. Poisson’s ratio of the nickel structure was −0.3.

Keywords

Topology Optimization Repeat Unit Nickel Oxide Metallic Nickel Apparent Shear Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors thank the Office of Naval Research and Dr. Stephen Fishman for support.

References

  1. 1.
    Haeri AY, Weidner DJ, Parise JB (1992) Science 257:650CrossRefGoogle Scholar
  2. 2.
    Gibson L, Ashby M (1997) Cellular solids, 2nd edn. Cambridge University Press, Cambridge, p 187Google Scholar
  3. 3.
    Lakes R (1987) Science 235:1038CrossRefGoogle Scholar
  4. 4.
    Friis E, Lakes R, Park J (1988) J Mater Sci 23:4406CrossRefGoogle Scholar
  5. 5.
    Neale PJ, Alderson KL, Pickles AP, Evans KE (1993) J Mater Sci Lett 12:1529Google Scholar
  6. 6.
    Caddock BD, Evans KE (1989) J Phys D Appl Phys 22:1877CrossRefGoogle Scholar
  7. 7.
    Caddock BD, Evans KE (1989) J Phys D Appl Phys 22:1883CrossRefGoogle Scholar
  8. 8.
    He CL, Puwei G, Anselm C (1998) Macromolecules 31:3145CrossRefGoogle Scholar
  9. 9.
    Freedman A (1990) J Sound Vibrat 137:209CrossRefGoogle Scholar
  10. 10.
    Nkansah MA, Evans KE, Hutchinson IJ (1993) J Mater Sci 28:2687CrossRefGoogle Scholar
  11. 11.
    Choi JB, Lakes RS (1991) Cell Polymer 10:205Google Scholar
  12. 12.
    Choi JB, Lakes RS (1992) J Mater Sci 27:4678CrossRefGoogle Scholar
  13. 13.
    Choi JB, Lakes RS (1992) J Mater Sci 27:5372Google Scholar
  14. 14.
    Fonseca JSO (1997) Design of microstructures of periodic composite materials. PhD Thesis, University of Michigan, Department of Mechanical Engineering and Applied MechanicsGoogle Scholar
  15. 15.
    Sigmund O (1995) Mechanics Mater 20:351CrossRefGoogle Scholar
  16. 16.
    Larsen U, Sigmund O, Bouwstra S (1997) J Microelectromechanical Syst 6:99CrossRefGoogle Scholar
  17. 17.
    Van Hoy C, Barda A, Griffith ML, Halloran JW (1998) J Am Ceramic Soc 81:152CrossRefGoogle Scholar
  18. 18.
    Crumm AT, Halloran JW (1998) J Am Ceramic Soc 81:1053CrossRefGoogle Scholar
  19. 19.
    German RM (1984) Powder metallurgy science, 2nd edn. Metal Powder Industries Federation, Princeton, NJ, p 95Google Scholar
  20. 20.
    Davis JR (ed) (1998) Metals handbook – desk edition, 2nd edn. ASM International, Materials Park, OH, p 609Google Scholar
  21. 21.
    Frecker M, Ananthasuresh G, Nishiwaki S, Kikuchi N, Kota S (1997) J Mech Des 119:238Google Scholar
  22. 22.
    Saggere L, Kota S (1999) AIAA J 37:572CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Adaptive Materials IncorporatedAnn ArborUSA

Personalised recommendations