Journal of Materials Science

, Volume 42, Issue 8, pp 2543–2550 | Cite as

Structural and electrical properties of SiO2–Li2O–Nb2O5 glass and glass-ceramics obtained by thermoelectric treatments

  • M. P. F. Graça
  • M. G. Ferreira da Silva
  • M. A. Valente


Glass and glass-ceramics with the molar composition of 60SiO2–30Li2O–10Nb2O5 (mole %) were studied. Ferroelectric lithium niobate (LiNbO3) nanocrystals were precipitated in the glass matrix trough a thermal treatment, with and without the simultaneous application of an external electric field. The as-prepared sample, yellow and transparent, was heat-treated (HT) at 600 and 650 °C and thermoelectric treated (TET) at 600 °C. The applied electric fields were the following ones: (i) 5 × 104 V/m; (ii) 1 × 105 V/m. Differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman and dielectric spectroscopies were used to investigate the glass samples properties.

The LiNbO3 crystalline phase was detected in the 650 °C HT sample and in the 600 °C TET samples. The presence of an external electric field, during the heating process, promotes the glass crystallization at lower temperatures. In the TET samples, the surface crystallization of the cathode and the anode are different.

The number and size of the crystallites, in the glass network, dominate the electrical dc behavior while the ac conductivity process is more dependent of the glass matrix structure.

The obtained results reflect the important role carried out by the temperature and the applied electric field in the glass-ceramic structures.


LiNbO3 External Electric Field Applied Electric Field Glass Matrix Lithium Niobate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank to the Fundação para a Ciência e Tecnologia (FCT), for the financial support (SFRH/BD/6314/2001).


  1. 1.
    Aboulleil MM, Leonberger FJ (1989) J Am Ceram Soc 72:1311CrossRefGoogle Scholar
  2. 2.
    Vogel EM (1989) J Am Ceram Soc 72:719CrossRefGoogle Scholar
  3. 3.
    Ding Y, Miura Y, Nakaoka S, Nanba T (1999) J Non-Cryst Solids 259:132CrossRefGoogle Scholar
  4. 4.
    Kim JE, Kim SJ, Ohshima K, Hwang YH, Yang YS (2004) Mater Sci Eng A 375–377:1255CrossRefGoogle Scholar
  5. 5.
    Weis RS, Gaylord TK (1985) Appl Phys A 37:191CrossRefGoogle Scholar
  6. 6.
    Kim HG, Komatsu T, Sato R, Matusita K (1994) J Non-Cryst Solids 162:201CrossRefGoogle Scholar
  7. 7.
    Graça MP, Ferreira da Silva MG, Valente MA (2002) Advan Mater Forum I, 161Google Scholar
  8. 8.
    Graça MPF, Valente MA, Ferreira da Silva MG (2003) J Non-Cryst Solids 325: 267CrossRefGoogle Scholar
  9. 9.
    Graça MPF, Ferreira da Silva MG, Valente MA (2005) J Non-Cryst Solids 351:2951CrossRefGoogle Scholar
  10. 10.
    Martin SW, Angell CA (1986) J Non-Cryst Solids 83:185CrossRefGoogle Scholar
  11. 11.
    Macdonald JR (1987) Impedance spectroscopy. John Wiley & Sons, New YorkGoogle Scholar
  12. 12.
    Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectrics Press, LondonGoogle Scholar
  13. 13.
    Chowdari BVR, Radhakrishnan K (1989) J Non-Cryst Solids 110: 101CrossRefGoogle Scholar
  14. 14.
    Kremer F, Schönhals A (2002) Broadband dielectric spectroscopy. Springer, GermanyGoogle Scholar
  15. 15.
    Kim HG, Komatsu T, Sato R, Matusita K (1996) J Mater Sci 31: 2159CrossRefGoogle Scholar
  16. 16.
    Fuss T, Ray CS, Kitamura N, Makihara M, Day DE (2003) J Non-Cryst Solids 318: 157CrossRefGoogle Scholar
  17. 17.
    Yagi T, Susa M, Nagata K (2003) J Non-Cryst Solids 315:54CrossRefGoogle Scholar
  18. 18.
    Navarro JMF (1991) El vidrio. CSIC-Fundación Centro Nacional del Vidrio, MadridGoogle Scholar
  19. 19.
    Kusz B, Trzebiatowski K, Barczynski RJ (2003) Solid State Ionics 159:293CrossRefGoogle Scholar
  20. 20.
    Zeng HC, Tanaka K, Hiaro K, Soga N (1997) J Non-Cryst Solids 209:112CrossRefGoogle Scholar
  21. 21.
    Gerth K, Rüsell C, Kending R, Schleevoigt P, Dunken H (1999) Phys Chem Glasses 40(3):135Google Scholar
  22. 22.
    Nassau K, Wang CA, Grasso M (1978) J Am Ceram Soc 62:503CrossRefGoogle Scholar
  23. 23.
    Shibuta N, Horigudhi M, Edahino T (1981) J Non-Cryst Solids 45:115CrossRefGoogle Scholar
  24. 24.
    Fukumi K, Sakka S (1988) J Mater Sci 23:2819CrossRefGoogle Scholar
  25. 25.
    Umesaki N, Iwamoto N, Tatsumisago M, Minami T (1988) J Non-Cryst Solids 106:77CrossRefGoogle Scholar
  26. 26.
    Hirano S, Yogo T, Kikuta K, Isobe Y (1993) J Mater Sci 28: 4188CrossRefGoogle Scholar
  27. 27.
    Andrade JS, Pinheiro AG, Vasconcelos IF, Sasaki JM, Paiva JAC, Valente MA, Sombra ASB (1999) J Phys Condens Matter 11: 4451CrossRefGoogle Scholar
  28. 28.
    Lipovskii AA, Tagantsev DK, Vetrov, Yanush OV (2003) Opt Mater 21:749CrossRefGoogle Scholar
  29. 29.
    Efimov AM (1999) J Non-Cryst Solids 253:95CrossRefGoogle Scholar
  30. 30.
    Cardinal T, Fargin E, Le Flem G, Leboiteux S (1997) J Non-Cryst Solids 222:228Google Scholar
  31. 31.
    Koné A, Barrau B, Souquet JL, Ribes M (1979) Mater Res Bull 14:393CrossRefGoogle Scholar
  32. 32.
    Matthias BT, Remaika JP (1951) Phys Rev 82 (5):727CrossRefGoogle Scholar
  33. 33.
    Cutroni M, Mandanici A (1998) Solid Sate Ionics, 105:149CrossRefGoogle Scholar
  34. 34.
    Zhang PX, Mitchell IV, Tong BY, Schultz PJ (1994) Phys Rev B 50(23):17080CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • M. P. F. Graça
    • 1
  • M. G. Ferreira da Silva
    • 2
  • M. A. Valente
    • 1
  1. 1.Physics department (FSCOSD)Aveiro UniversityAveiroPortugal
  2. 2.Glass and ceramic engineering department (CICECO)Aveiro UniversityAveiroPortugal

Personalised recommendations