Journal of Materials Science

, Volume 42, Issue 15, pp 6316–6324 | Cite as

Sintering of an ultra pure α-alumina powder: I. Densification, grain growth and sintering path

  • Guillaume Bernard-Granger
  • Christian Guizard
  • Ahmed Addad
Article

Abstract

Sintering in air of an ultra pure α-alumina powder has been investigated. Isothermal experiments have been conducted on green samples shaped by slip casting. The grain growth and densification kinetics have been established. The “relative density/grain size” trajectory, called “sintering path”, has been drawn. Hypotheses concerning the mechanisms controlling grain growth and densification have been formulated. For the first time, it is shown that grain growth and densification kinetics exhibit two distinct regimes, where an initial point defect formation step plays a key role. When point defects have been generated, the diffusion of the associated Al3+ cations controls grain growth and densification.

References

  1. 1.
    Krell A, Blank P, Ma H, Hutzler T, Nebelung M (2003) J Amer Ceram Soc 86(4):546Google Scholar
  2. 2.
    Krell A, Blank P, Ma H, Hutzler T, van Bruggen MPB, Apetz R (2003) J Amer Ceram Soc 86(1):12CrossRefGoogle Scholar
  3. 3.
    Munro RG (1997) J Amer Ceram Soc 80(8):1919CrossRefGoogle Scholar
  4. 4.
    Schacht M, Boukis N, Dinjus E (2000) J Mater Sci 35(24):6251, DOI: 10.1023/A:1026714218522Google Scholar
  5. 5.
    Mikeska KR, Bennison SJ (1999) J Amer Ceram Soc 82(12):3561CrossRefGoogle Scholar
  6. 6.
    Oda K, Yoshio T (1997) J Amer Ceram Soc 80(12):3233CrossRefGoogle Scholar
  7. 7.
    Dogan CP, Hawk JA (1999) Wear 225–229(2):1050Google Scholar
  8. 8.
    Kalin M, Novak S, Vizintin J (2003) Wear 254(11):1141CrossRefGoogle Scholar
  9. 9.
    Coble RL (1962) U.S. Patent 3,026,210Google Scholar
  10. 10.
    St. Pierre PDS, Gatti A (1962) U.S. Patent 3,026,177Google Scholar
  11. 11.
    Apetz R, van Bruggen MPB (2003) J Amer Ceram Soc 86(3):480Google Scholar
  12. 12.
    Wei GC, Hecker A, Goodman DA (2001) J Amer Ceram Soc 84(12):2853CrossRefGoogle Scholar
  13. 13.
    Gupta TK (1972) J Amer Ceram Soc 55(5):249CrossRefGoogle Scholar
  14. 14.
    Krell A, Baur G, Dähne C (2003) Proc SPIE 5078:199CrossRefGoogle Scholar
  15. 15.
    Van Cappellen E, Doukhan JC (1994) Ultramicroscopy 53:343CrossRefGoogle Scholar
  16. 16.
    Voytovych R, Mac Laren I, Gülgun MA, Cannon RM, Rühle M (2002) Acta Mater 50:3453CrossRefGoogle Scholar
  17. 17.
    Cahn JW (1962) Acta Metal 10:789CrossRefGoogle Scholar
  18. 18.
    Berry KA, Harmer MP (1986) J Amer Ceram Soc 69(2):143CrossRefGoogle Scholar
  19. 19.
    Thompson AM, Harmer MP (1993) J Amer Ceram Soc 76(9):2248CrossRefGoogle Scholar
  20. 20.
    Wang X-H, Chen P-L, Chen I-W (2006) J Amer Ceram Soc 89(2):431CrossRefGoogle Scholar
  21. 21.
    Chen IW, Wang XH (2000) Nature 404:168CrossRefGoogle Scholar
  22. 22.
    Binner J (2006) Processing Nanostructured Structural Ceramics. Informal communicationGoogle Scholar
  23. 23.
    Bernard-Granger G, Guizard C, Duclos R (2006) J Mater Sci, doi:10.1007/s10853-006-1379-7 Google Scholar
  24. 24.
    Bae S, Baik S (1993) J Amer Ceram Soc 76(4):1065CrossRefGoogle Scholar
  25. 25.
    Clarke DR (1987) J Amer Ceram Soc 70(1):15CrossRefGoogle Scholar
  26. 26.
    Zhao J, Harmer MP (1988) J Amer Ceram Soc 71(2):113CrossRefGoogle Scholar
  27. 27.
    Li C-W, Kingery WD (1984) Adv Ceram 10:368Google Scholar
  28. 28.
    Gruffel P, Carry CP (1993) J Eur Ceram Soc 11:189CrossRefGoogle Scholar
  29. 29.
    Loudjani MK, Cortes R (2000) J Eur Ceram Soc 20:1483CrossRefGoogle Scholar
  30. 30.
    Brook RJ (1968) Scripta Met 2:375CrossRefGoogle Scholar
  31. 31.
    El-Aiat MM, Kröger FA (1982) J Amer Ceram Soc 65(3):162CrossRefGoogle Scholar
  32. 32.
    Le Gall M, Lesage B, Bernardi J (1994) Phil Mag A 70(5):761CrossRefGoogle Scholar
  33. 33.
    Frost HJ, Ashby MF (2001) Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Web version, Chapter 14Google Scholar
  34. 34.
    Su H, Johnson DL (1996) J Amer Ceram Soc 79(12):3211CrossRefGoogle Scholar
  35. 35.
    Lance D (2004) Frittage de l’Alumine α Submicronique. Nouvelle Relation Dilatométrie / Evolution Microstructurale. Ph.D. Thesis in Materials Science, Saint-Etienne School of Mines and Jean Monnet UniversityGoogle Scholar
  36. 36.
    Fang T-T, Shiue J-T, Shiau F-S (2003) Mater Chem Phys 80:108CrossRefGoogle Scholar
  37. 37.
    Sato E, Carry CP (1995) J Eur Ceram Soc 15:9CrossRefGoogle Scholar
  38. 38.
    Sato E, Carry CP (1996) J Amer Ceram Soc 79(8):2156CrossRefGoogle Scholar
  39. 39.
    Matsui K, Ohmichi N, Ohgai M (2005) J Amer Ceram Soc, DOI: 10.1111/j.1551-2916.2005.00620.xGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Guillaume Bernard-Granger
    • 1
  • Christian Guizard
    • 1
  • Ahmed Addad
    • 2
  1. 1.Laboratoire de Synthèse et Fonctionnalisation des CéramiquesFRE 2770 CNRS/Saint-Gobain, Saint-Gobain C.R.E.E.Cavaillon CedexFrance
  2. 2.Laboratoire de Structure et Propriétés de l’Etat Solide, UMR 8008 CNRSUniversité des Sciences et Technologies de LilleVilleneuve d’Ascq CedexFrance

Personalised recommendations