Journal of Materials Science

, Volume 42, Issue 15, pp 6439–6445 | Cite as

Preparation and characterization of SiC nanowires and nanoparticles from filter paper by sol–gel and carbothermal reduction processing

  • Wei Wang
  • ZhiHao Jin
  • Tao Xue
  • GangBin Yang
  • GuanJun Qiao


The carbothermal reduction of SiO2 gel containing filter paper (as carbon precursors) in argon was used to prepare SiC nanowires and nanoparticles. The resulting SiC ceramic, as well as the conversion mechanism of carbon/silica composites to SiC nanowires and nanoparticles, have been investigated by scanning electron microscopy (SEM), Transmission electron microscopy (TEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TG) techniques. XRD and IR studies show that the materials, obtained from reaction at 1550 °C for 1 h in static argon atmosphere, are β-SiC. SEM and TEM reveal that SiC nanowires is single crystal wires with diameters ranging from 50–200 nm and their lengths over several tens of microns. According to thermodynamic analysis, SiC nanowires and SiC nanoparticles in the resulting SiC ceramic are formed by gas-gas reaction of SiO (g) and CO (g).


Carbothermal Reduction Carbon Precursor Silicon Monoxide Carbothermal Reduction Processing Gaseous Silicon Monoxide 



The authors gratefully acknowledgement the financial supports from the National Natural Science Foundation of China (No. 50572084).


  1. 1.
    Dai HJ, Wong EW, Lu YZ, Fan SS, Lieber CM (1995) Nature 375:769CrossRefGoogle Scholar
  2. 2.
    Yang PD, Lieber CM (1996) Science 273:1836CrossRefGoogle Scholar
  3. 3.
    Xiia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) Adv Mater 15:353CrossRefGoogle Scholar
  4. 4.
    Wong EW, Sheehan PE, Lieber CM (1997) Science 277:1971CrossRefGoogle Scholar
  5. 5.
    Wu ZS, Deng SZ, Chen J, Zhou J (2002) Appl Phys Lett 80:3829CrossRefGoogle Scholar
  6. 6.
    Zhang HF, Wang CM, Wang SL (2002) Nano Lett 2:941CrossRefGoogle Scholar
  7. 7.
    Wu X, Song W, Huang W, Pu M, Zhao B, Sun Y, Du J (2001) Mater Res Bull 36:847CrossRefGoogle Scholar
  8. 8.
    Meng G, Zang L, Qin Y, Feng S, Mo C, Li H, Zhang S (1999) J Mater Sci Lett 18:1255CrossRefGoogle Scholar
  9. 9.
    Liang C, Meng G, Zhang L, Wu Y, Cui Z (2000) Chem Phy Lett 329:323CrossRefGoogle Scholar
  10. 10.
    Shi W, Zheng Y, Peng H, Wang N, Lee CS, Lee ST (2000) J Am Ceram Soc 83:3228CrossRefGoogle Scholar
  11. 11.
    Morales AM, Lieber CM (1998) Science 279:208CrossRefGoogle Scholar
  12. 12.
    Yu DP, Lee CS, Bello I, Sun XS, Tang YH, Zhou GW, Bai ZG, Zhang Z, Feng SQ (1998) Solid state commun 105:403CrossRefGoogle Scholar
  13. 13.
    Sharma NK, Williams WS (1984) J Am Ceram Soc 67:715CrossRefGoogle Scholar
  14. 14.
    Kajiwara M (1986) J Mater Sci 21:2254CrossRefGoogle Scholar
  15. 15.
    Seo W-S, Koumoto K (2000) J Am Ceram Soc. 83(10):2584–2592CrossRefGoogle Scholar
  16. 16.
    Zhang LD, Meng GW, Phillipp F (2000) Mater Sci Eng A 286:34–38CrossRefGoogle Scholar
  17. 17.
    Meng GW, Cui Z, Zhang LD, Phillipp F (2000) J Cry Grow 209:801–806CrossRefGoogle Scholar
  18. 18.
    Shin Y, Li XH, Wang CM et al (2004) Adv Mater 16(14):1212–1215CrossRefGoogle Scholar
  19. 19.
    Streitwieser DA, Popovska N, Gerhard H, Emig G (2005) J Eur Ceram Soc 25:817–828CrossRefGoogle Scholar
  20. 20.
    Qian JM, Wang JP, Qiao GJ, Jin ZH (2004) J Eur Ceram Soc 24:3251–3259CrossRefGoogle Scholar
  21. 21.
    Greil P (2001) J Eur Ceram Soc 21(2):105–118CrossRefGoogle Scholar
  22. 22.
    Greil P, Lifka T, Kaindl A (1998) J Eur Ceram Soc 18:1975–1983CrossRefGoogle Scholar
  23. 23.
    Cheng HM, Endo H, Okabe T, Saito K, Zheng GB (1999) J Porous Mater 6:233–237CrossRefGoogle Scholar
  24. 24.
    Koumoto K, Takeda S, Pai CH, Sato T, Yanagida H (1989) J Am Ceram Soc 72(10):1985–1987CrossRefGoogle Scholar
  25. 25.
    Liang CH, Meng GW, Zhang LD, Wu YC, Cui Z (2000) Chem Phys Lett 329:323–328CrossRefGoogle Scholar
  26. 26.
    Paccaud O, Derre A (2000) Chem Vapor Depos 6(1):33–40CrossRefGoogle Scholar
  27. 27.
    Guterl CV, Ehrburger P (1997) Carbon 35(10–11):1587–1592CrossRefGoogle Scholar
  28. 28.
    Martin HP, Ecke R, Muller E (1998) J Eur Ceram Soc 18(12):1737–1742CrossRefGoogle Scholar
  29. 29.
    Saito M, Nagashima S, Kato A (1992) J Mat Sci Lett 11(7):373–376CrossRefGoogle Scholar
  30. 30.
    Barin J (1989) Thermochemical data of pure substances, Vols. 1 and 2. VCH, WeinheimGoogle Scholar
  31. 31.
    Lewis B (1974) J Cryst Growth 21:29CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Wei Wang
    • 1
  • ZhiHao Jin
    • 1
  • Tao Xue
    • 1
  • GangBin Yang
    • 1
  • GuanJun Qiao
    • 1
  1. 1.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXianP.R. China

Personalised recommendations