Advertisement

Journal of Materials Science

, Volume 42, Issue 10, pp 3419–3424 | Cite as

Microscopic structural evolution in terms of porosity in high-Tc superconductors

  • Nasr-Eddine ChakriEmail author
  • Abdelaziz Benaldjia
  • Abdelaziz Amara
  • Mohamed Rida Benloucif
  • Mohamed Guerioune
Review
  • 62 Downloads

Abstract

The low critical current densities of high-Tc superconductors materials can be related to the microstructural imperfections such as pores and microcracks, which reduce the effective current carrying cross section.

The present work examines the characterisation of the state of microstructure and its evolution during thermal treatment of Bi2Sr2Ca1Cu2O8. The dilatometric analysis was used to study the shrinkage mechanism during sintering. The microstructure of the sintered samples was characterised in terms of pores distribution and apparent density. Open porosity was measured by mercury porosimeter.

In order to compare the results, ultrasonic characterisation such as the longitudinal and transverse wave velocities in the ceramic was carried out. From an ultrasonic point of view, these microstructural features act as inhomogeneities and the ultrasonic parameters will depend on the geometrical arrangement of microstructure (pores have an effect both on Young’s modulus and attenuation).

Keywords

Rayleigh Wave Critical Current Density Dilatometry Acoustic Parameter Rayleigh Wave Velocity 

References

  1. 1.
    Bernodz JG, Muller KA (1986) Z Phys B 64:189CrossRefGoogle Scholar
  2. 2.
    Chu PH, Hor PH, Meng RL, Gao L, Huang ZJ, Wang YQ, Huang CJ (1987) Phys Rev Lett 58:911CrossRefGoogle Scholar
  3. 3.
    Maeda M, Tanaka Y, Fukukum M, Asano T (1988) Jpn J Appl Phys 27:L209CrossRefGoogle Scholar
  4. 4.
    Nes OM, Fossheim K, Motolura N, Kitazawa K (1991) Physica C 185–189:1391CrossRefGoogle Scholar
  5. 5.
    Wu C-T, Goretta Kc, Poeppel RB (1993) Appl Supercond 1(1/2):33CrossRefGoogle Scholar
  6. 6.
    Yasuko Torii, Hirokazu, Hiromi Takei, Kouji Tada (1990) Jpn J Appl Phys 29(6):L 952CrossRefGoogle Scholar
  7. 7.
    Guerioune M, Boudour A, Boumaïza Y (1998) congrès Euro méditerranéen. Nantes, FranceGoogle Scholar
  8. 8.
    Eva Dresder-Krasicka (1990) Review of Progress in Qualitative N.D.E., vol 9Google Scholar
  9. 9.
    Munro RG (1999) In: Poole CP (ed) Handbook of superconductivity, Academic Press, New York, pp 570–625Google Scholar
  10. 10.
    Alford NMcN, Birchall JD, Clegg WJ, Harmer MA, Kendall K (1988) J Mater Sci 23:761CrossRefGoogle Scholar
  11. 11.
    Phani KK, Niyogi SK (1986) J Mater Sci Lett 5:427CrossRefGoogle Scholar
  12. 12.
    Blendel JE, Chiang CK, Crammer DC, Freiman SW, Fuller ER Jr, Drescher-Krasicka E, Johnson WL, Ledbetter HM, Bennet LH, Swartzendriber LJ, Marinenko RB, Mykebust RL, Bright DS, Newbery DE (1987) Adv Ceram Mater 2:512CrossRefGoogle Scholar
  13. 13.
    Roth DJ, Dolhert LE (1990) Mater Eval 45:958Google Scholar
  14. 14.
    Mukhopadhyay AK, Phani KK (2000) J Eur Ceram Soc 20:29CrossRefGoogle Scholar
  15. 15.
    Round R, Bridge B (1987) J Mater Sci Lett 6:1471CrossRefGoogle Scholar
  16. 16.
    Dong J, Deng T, Li F, Yao Y (1990) Phys Rev B 42:301CrossRefGoogle Scholar
  17. 17.
    Chang F, Ford PJ, Saunders GA, Jiaqiang Li, Almond DP, Chapman B, Cankurtaran M, Poeppel RB, Goretta KC (1993) Supercond Sci Technol 6:484CrossRefGoogle Scholar
  18. 18.
    Ravinder Reddy R, Muralidhar M, Hari Babu V, Venugopal Reddy P (1995) Supercond Sci Technol 8:101CrossRefGoogle Scholar
  19. 19.
    Reddy PV, Murakami M (1999) Modern Phys Lett B 13(8):261CrossRefGoogle Scholar
  20. 20.
    Chandra Sekhar M, Gopala Krishna B, Ravinder Reddy R, Venugopal Reddy P, Suryanarayana SV (1995) Supercond Sci Technol 9:29CrossRefGoogle Scholar
  21. 21.
    Ahn Beam-Shu (2002) Bull Korean Chem Soc 23:1304CrossRefGoogle Scholar
  22. 22.
    Briggs A (1992) Acoustic microscopy. Clarendon Press, OxfordGoogle Scholar
  23. 23.
    Ledbetter H, Minglei T, Sudookkim N (1990) Phase Trans 23:61CrossRefGoogle Scholar
  24. 24.
    Anderson A, Russel GJ (1991) Physica C 185–189:1389CrossRefGoogle Scholar
  25. 25.
    Gigot V, Cros B, Saurel JM (1999) Acta Acoustica 85:346Google Scholar
  26. 26.
    Cros B, Gigot V, Despaux G (1997) Appl Surf Sci 119:242CrossRefGoogle Scholar
  27. 27.
    Guerioune M (1994) Thèse Doctorat d’Etat es science, Université de Annaba, pp 52–58Google Scholar
  28. 28.
    Kushibiki J, Chubachi N (1985) Electronic Lett 19(10):359CrossRefGoogle Scholar
  29. 29.
    David W, Johonson JR, Warren W. Rodes (1989) J Am Ceram Soc 72(12):2346 CrossRefGoogle Scholar
  30. 30.
    Tsukahara Y, Neron C, Jen CK, Kushibiki J (1993) Ultrasonic Symposium, 593Google Scholar
  31. 31.
    Brunet N, Cros B, Despaux G, Saurel JM (1998) Eur J Appl Phys 2:209CrossRefGoogle Scholar
  32. 32.
    Sheppard CGR, Wilson T (1981) Appl Phys Lett 38:858CrossRefGoogle Scholar
  33. 33.
    Boumaiza Y, Hadjoub Z, Doghmane A, Deboub L (1999) J Mat Sc Lett 18:295CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Nasr-Eddine Chakri
    • 1
    Email author
  • Abdelaziz Benaldjia
    • 1
  • Abdelaziz Amara
    • 1
  • Mohamed Rida Benloucif
    • 1
  • Mohamed Guerioune
    • 1
  1. 1.Laboratoire LEREC, Département de Physique, Faculté des SciencesUniversité Badji-Mokhtar AnnabaSidi-AmarAlgeria

Personalised recommendations