Journal of Materials Science

, Volume 42, Issue 15, pp 6331–6338 | Cite as

Effects of modification and heat-treatment on the abrasive wear behavior of hypereutectic Al–Si alloys

  • C. L. Xu
  • Y. F. Yang
  • H. Y. Wang
  • Q. C. JiangEmail author


In the present study, Al–Si alloys with Si contents of 23, 26, 28 and 31 wt.%, respectively, were modified with a new modifying agent. The results show that the primary silicon size decreased about 8–10 times after modification. The wear rates of the modified and heat-treated Al–Si alloys are lower than those of the unmodified and non-heat-treated Al–Si alloys, respectively. The silicon content in the range of 23–31 wt.% has a significant effect on the wear rates of the same processed Al–Si alloys (modification and heat treatment). Under the same load, the wear rates of the same processed Al–Si alloys decreased with the increasing silicon content. The abrasion took place mainly by cutting and partly by ploughing actions for the non-heat-treated Al–Si alloys, or on the contrary, mainly by ploughing and partly by cutting actions for heat-treated Al–Si alloys.


Wear Rate Wear Surface Abrasive Wear Abrasive Particle Primary Silicon 



This work was supported by the National Natural Science Foundation of China (No. 50531030) and the Ministry of Science and Technology of the People’s Republic of China (No. 2005CCA00300) as well as the Project 985-Automotive Engineering of Jilin University.


  1. 1.
    Lasa L, Rodriguez-Ibabe JM (2002) Scripta Mater 46:477CrossRefGoogle Scholar
  2. 2.
    Gupta M, Ling S (1999) J Alloys Compd 287:284CrossRefGoogle Scholar
  3. 3.
    Matsuura K, Kudoh M, Kinoshita H, Takahashi H (2003) Mater Chem Phys 81:393CrossRefGoogle Scholar
  4. 4.
    Yang B, Wang F, Zhang JS (2003) Acta Mater 51:4977CrossRefGoogle Scholar
  5. 5.
    Zhao HX, Cai J (1994) JOM 46(11):42CrossRefGoogle Scholar
  6. 6.
    Sarkar AD (1975) Wear 31:331CrossRefGoogle Scholar
  7. 7.
    Clarke J, Sarkar AD (1979) Wear 54:7CrossRefGoogle Scholar
  8. 8.
    Pramila Bai BN, Biswas SK (1987) Wear 120:61CrossRefGoogle Scholar
  9. 9.
    Torabian H, Patak JP, Tiwari SN (1995) J Mater Sci Lett 14:1631CrossRefGoogle Scholar
  10. 10.
    Prasad BK, Venkateswarlu K, Modi OP, Yegneswaran AH (1996) J Mater Sci Lett 15:1773CrossRefGoogle Scholar
  11. 11.
    Ogris E, Wahlen A, Lüchinger H, Uggowitzer PJ (2002) J Light Met 2:263CrossRefGoogle Scholar
  12. 12.
    Lasa L, Rodriguez-Ibabe JM (2003) Mater Sci Eng A 363:193CrossRefGoogle Scholar
  13. 13.
    Das S, Prasad SV, Ramachandran TR (1991) Mater Sci Eng A 138:123CrossRefGoogle Scholar
  14. 14.
    Jiang QC, Xu CL, Lu M, Wang HY (2005) Mater Lett 54:624CrossRefGoogle Scholar
  15. 15.
    Das S, Prasad SV, Ramachandran TR (1989) Wear 133:173CrossRefGoogle Scholar
  16. 16.
    Zum Gahr KH (1979) Met Prog 116:46Google Scholar
  17. 17.
    Stolarz J, Foct J (2001) Mater Sci Eng A 319–321:501CrossRefGoogle Scholar
  18. 18.
    Caceres CH, Griffiths JR (1996) Acta Mater 44:25CrossRefGoogle Scholar
  19. 19.
    Pedersen L, Arnberg L (2001) Metall Mater Trans 32A:525CrossRefGoogle Scholar
  20. 20.
    Haque MM, Sharif A (2001) J Mater Process Technol 118:69CrossRefGoogle Scholar
  21. 21.
    Wang AG, Hutchings IM (1989) Wear 129:23CrossRefGoogle Scholar
  22. 22.
    Evans AG, Wilshaw TR (1976) Acta Metall 24:939CrossRefGoogle Scholar
  23. 23.
    Wang F, Liu HM, Ma YJ, Jin YS (2004) Mater Design 25:163CrossRefGoogle Scholar
  24. 24.
    Liou JW, Chen LH, Lui TS (1995) J Mater Sci 30:258CrossRefGoogle Scholar
  25. 25.
    Sawla S, Das S (2004) Wear 257:555CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • C. L. Xu
    • 1
  • Y. F. Yang
    • 1
  • H. Y. Wang
    • 1
  • Q. C. Jiang
    • 1
    Email author
  1. 1.The Key Laboratory of Automobile Materials, Ministry of Education and Department of Materials Science and EngineeringJilin University at Nanling CampusChangchunP. R. China

Personalised recommendations