Advertisement

Journal of Materials Science

, Volume 42, Issue 15, pp 6426–6432 | Cite as

Effect of Y2O3 on the crystallization behavior of SiO2–MgO–B2O3–Al2O3 glasses

  • K. Singh
  • Neha Gupta
  • O. P. Pandey
Article

Abstract

A series of glass comprising of SiO2–MgO–B2O3–Y2O3–Al2O3 in different mole ratio has been synthesized. The crystallization kinetics of these glasses was investigated using various characterization techniques such as differential thermal analysis (DTA), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Crystallization behavior of these glasses was markedly influenced by the addition of Y2O3 instead of Al2O3. Addition of Y2O3 increases the transition temperature, T g, crystallization temperature, T c and stability of the glasses. Also, it suppresses the formation of cordierite phase, which is very prominent and detrimental in MgO-based glasses. The results are discussed on the basis of the structural and chemical role of Y3+ and Al3+ ions in the present glasses.

Keywords

Differential Thermal Analysis Y2O3 Solid Oxide Fuel Cell Mg2SiO4 Thermal Gravimetric Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

For carrying out this research the financial assistance provided by All India Council for Technical Education (AICTE), New Delhi and Department of Science and Technology (DST) is highly acknowledged.

References

  1. 1.
    Ley KL, Krumpel M, Meisser TR, Bloom I (1996) J Mat Res 11:1449Google Scholar
  2. 2.
    Eichler K, Solow G, Otschil P, Schaffrath W (1999) J Eur Ceram Soc 19:1101CrossRefGoogle Scholar
  3. 3.
    Sung YM (1996) J Mater Sci 31:5421. DOI: 10.1007/BF01159312Google Scholar
  4. 4.
    Lahl N, Singh K, Singheiser L, Hilpert K, Bahadur D (2000) J Mater Sci 35:3089. DOI: 10.1023/A: 1004851418274Google Scholar
  5. 5.
    Lahl N, Bahadur D, Singh K, Singheiser L, Hilpert K (2002) J Electrochem Soc 149:A607CrossRefGoogle Scholar
  6. 6.
    Schwickert T, Sievering R, Geasee P, Conradt R (2002) Matt-wisu Werkstofftech 33:363CrossRefGoogle Scholar
  7. 7.
    Lara C, Pauscal MJ, Duran A (2004) J Non-Cryst Solids 348:149CrossRefGoogle Scholar
  8. 8.
    Zdaniewski W (1975) J Am Ceram Soc 58:163CrossRefGoogle Scholar
  9. 9.
    Yun-Mo-Sung (2002) J Mater Res 17:517Google Scholar
  10. 10.
    Mac Dowell JF, Beall GH (1969) J Am Ceram Soc 52:17CrossRefGoogle Scholar
  11. 11.
    Davis RF, Pask JA (1972) J Am Ceram Soc 55:525CrossRefGoogle Scholar
  12. 12.
    Bahadur D, Lahl N, Singh K, Singheiser L, Hilpert K (2004) J Electrochem Soc 15:A558CrossRefGoogle Scholar
  13. 13.
    Lee JD (1993) Concise inorganic chemistry, 4th edn. Chapman and Hall, London, p 683Google Scholar
  14. 14.
    Madras G, Coy BJ (2001) J Chem Phys 115:6699CrossRefGoogle Scholar
  15. 15.
    Zimmermann M, Carrard M, Kurz W (1989) Acta Metall 37:3305CrossRefGoogle Scholar
  16. 16.
    Zimmermann M, Carrard M, Gremand M, Kurz W (1995) Mat Sci Eng A 134:1278CrossRefGoogle Scholar
  17. 17.
    Grimand M, Carrard M, Kurz W (1990) Acta Metall Mater 38:2587CrossRefGoogle Scholar
  18. 18.
    Ito E, Akaogi M, Topor L, Navrotsky A (1990) Science 249:1275CrossRefGoogle Scholar
  19. 19.
    Leinenweber K, Navrotsky A (1988) Phys Chem Minerals 15:588CrossRefGoogle Scholar
  20. 20.
    Yagi T, Mao HK, Bell PM (1978) Phys Chem Minerals 3:97CrossRefGoogle Scholar
  21. 21.
    Horiuchi H, Sawamoto H (1981) Am Mineral 66:568Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Physics and Materials ScienceThapar Institute of Engineering and Technology (Deemed University)PatialaIndia

Personalised recommendations