Journal of Materials Science

, Volume 42, Issue 15, pp 6260–6266 | Cite as

Study on the damping behavior of Al/SiCp composite in thermal cycling

  • Hongxiang Zhang
  • Mingyuan Gu


A SiC particulate reinforced 1040 commercially pure aluminum was thermally cycled in air between 20 and 300 °C up to 500 cycles. And the damping capacities of the specimens after 50 and 500 cycles were measured against temperature and strain amplitude. Thermal cycling causes the increase in damping, and dislocation damping is the main mechanism. A damping peak was observed in the range of 150–200 °C, which is related to dislocation motion. Thermal cycling leads to the increase in the peak temperature. The activation energy of the internal friction peak was calculated by Arrhenius equation, yielding 1.02 and 1.09 eV for 50 and 500 cycles, respectively. Increase in dislocation during thermal cycling is responsible for the increase in peak temperature and activation energy.


Thermal Cycling Internal Friction Plastic Zone Strain Amplitude Dislocation Motion 



The authors are grateful for the financial supported from Nature Science Foundation of China under Grant No. 50271043.


  1. 1.
    Ahn JJ, Ochiai S (2002) J Comp Mater 36:2073CrossRefGoogle Scholar
  2. 2.
    Oguocha INA, Radjabi M, Yannacopoulos S (2001) Can Metall Quart 40(2):245CrossRefGoogle Scholar
  3. 3.
    Lloyd DJ (1991) Acta Metall Mater 39:59CrossRefGoogle Scholar
  4. 4.
    Taya M, Mori T (1987) Acta Metall 35:155CrossRefGoogle Scholar
  5. 5.
    Dunand DC, Mortensen A (1991) Acta Metall Mater 39:127CrossRefGoogle Scholar
  6. 6.
    Yu D, Chandra T (1995) Mater Sci Forum 189–190:303CrossRefGoogle Scholar
  7. 7.
    Trojanova Z, Pahutova M, Kiehn J, Lukac P, Kainer KU (1997) Key Eng Mater 127–131(Pt 2):1001Google Scholar
  8. 8.
    Kustov S, Golyandin S, Sapozhnikov K, Vincent A, Maire E, Lormand G (2001) Mater Sci Eng A 313(1–2):218CrossRefGoogle Scholar
  9. 9.
    Lavernia EJ, Zhang J, Perez RJ (1995) Key Eng Mater 104–107:691CrossRefGoogle Scholar
  10. 10.
    Parrini L, Schaller R (1996) Acta Mater 44(10):3895CrossRefGoogle Scholar
  11. 11.
    Urreta S, Schaller R (1993) Scr Metall Mater 29:165CrossRefGoogle Scholar
  12. 12.
    Wang C, Zhu Z (1998) Scr Mater 38(12):1739CrossRefGoogle Scholar
  13. 13.
    Parrini L, Schaller R (1995) Metall Trans A 26:1457CrossRefGoogle Scholar
  14. 14.
    Vicent A, Lormand G, Durieux S, Girard C, Maire E, Fougeres R (1996) J Phys IV C8:719Google Scholar
  15. 15.
    Zhang J, Perez RJ, Lavernia EJ (1994) Acta Metall Mater 42:395CrossRefGoogle Scholar
  16. 16.
    Perez RJ, Zhang J, Gungor RJ (1993) Metall Trans A 24:701CrossRefGoogle Scholar
  17. 17.
    Zener C (1948) Elasticity and anelasticity of metals. University of Chicago, Chicago, ILGoogle Scholar
  18. 18.
    Kê TS (1947) Phys Rev 72:41CrossRefGoogle Scholar
  19. 19.
    Flom Y, Arsenault RJ (1986) Mater Sci Eng A 77:191CrossRefGoogle Scholar
  20. 20.
    Schoek G (1969) Phys Status Solid 32:651CrossRefGoogle Scholar
  21. 21.
    Vogelsang M, Arsenault RJ, Fisher RM (1986) Metall Trans A 17:379CrossRefGoogle Scholar
  22. 22.
    Hill R (1983) The mathematical theory of plasticity. Oxford University Press, OxfordGoogle Scholar
  23. 23.
    Granato AV, Lücke K (1956) J Appl Phys 27:583CrossRefGoogle Scholar
  24. 24.
    Granato AV, Lücke K (1956) J Appl Phys 27:789CrossRefGoogle Scholar
  25. 25.
    Granato AV, Lücke K (1981) J Appl Phys 52:7136CrossRefGoogle Scholar
  26. 26.
    Nowick AS, Berry BS (1972) Anelastic relaxation in crystalline solids. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations