Advertisement

Journal of Materials Science

, Volume 42, Issue 14, pp 5773–5777 | Cite as

Effects of pH on the dispersion and cell performance of LiCoO2 cathodes based on the aqueous process

  • Chia-Chen LiEmail author
  • Jyh-Tsung Lee
  • Yi-Ling Tung
  • Chang-Rung Yang
Article

Abstract

The effects of the pH of a water-based slurry on the dispersion homogeneity and cell performance of lithium cobalt oxide (LiCoO2) cathodes were investigated. Based on the results of dispersion and cell performance characterizations, it is known that the pH will affect the dispersion homogeneity of cathode materials and the resulting electronic conduction, adhesion strength and C-rate capability of as-prepared electrodes. For the LiCoO2 aqueous slurry, the as-prepared electrode sheet is homogeneous at its initial equilibrium pH of 11.6 which is a safe distance away from its iso-electric point (IEP). However, this pH value is too high; the slurry would significantly react with the aluminum substrate to damage the microstructures of the sheets and the corresponding cell performances. Hence, the pH of an as-prepared LiCoO2 slurry should be adjusted lower and kept away from the IEP as well.

Keywords

Adhesion Strength Dispersion Property Dispersion Homogeneity Styrene Butadiene Rubber Aqueous Slurry 

Notes

Acknowledgement

The authors are grateful to Professor J. H. Jean for his help on zeta-potential measurements.

References

  1. 1.
    Dey AN, Sullivan BP (1970) J Electrochem Soc 117:222CrossRefGoogle Scholar
  2. 2.
    Wolverton C, Zunger A (1998) J Electrochem Soc 145:2424CrossRefGoogle Scholar
  3. 3.
    Cheon SE, Kwon CW, Kim DB, Hong SJ, Kim HT, Kim SW (2000) Electrochim Acta 46:599CrossRefGoogle Scholar
  4. 4.
    Fransson L, Eriksson T, Edström K, Gustafsson T, Thomas JO (2001) J Power Sources 101:1CrossRefGoogle Scholar
  5. 5.
    Liu Z, Yu A, Lee JY (1998) J Power Sources 74:228CrossRefGoogle Scholar
  6. 6.
    Kim KM, Jeon WS, Chung IJ, Chang SH (1999) J Power Sources 83:108CrossRefGoogle Scholar
  7. 7.
    Kosova N, Devyatkina E, Osintsey D (2004) J Mater Sci 39:5031CrossRefGoogle Scholar
  8. 8.
    Kim J, Kim B, Lee JG, Cho J, Park B (2005) J Power Sources 139:289CrossRefGoogle Scholar
  9. 9.
    Li CC, Lee JT, Lo CY, Wu MS (2005) Electrochem Solid State Lett 8:A509CrossRefGoogle Scholar
  10. 10.
    Yang HQ, Li DP, Han S, Li N, Lin BX (1995) J Power Sources 58:221CrossRefGoogle Scholar
  11. 11.
    Saekil S, Lee J, Zhang Q, Saito F (2004) Int J Miner Process 74S:S373CrossRefGoogle Scholar
  12. 12.
    Nahass P, Rhine WE, Pober RL, Bowen HK, Robbins WL (1990) In: Nair KM, Pohanka R, Buchanan RC (eds) Ceramic transactions, vol 15, Materials and processes in microelectronic systems. American Ceramic Society, Westerville, OH, p 355Google Scholar
  13. 13.
    Kissa E (1999) Dispersions-characterization, testing, and measurement, ch 14. Marcel Dekker, New YorkGoogle Scholar
  14. 14.
    Appetecchi GB, Scrosati B (1998) Electrochim Acta 43:1105CrossRefGoogle Scholar
  15. 15.
    Abraham KM, Pasquariello DM, Willstaedt EM (1998) J Electrochem Soc 145:482CrossRefGoogle Scholar
  16. 16.
    Fujimoto J, Petri DFS (2001) Langmuir 17:56CrossRefGoogle Scholar
  17. 17.
    Li CC, Jean JH (2002) J Am Ceram Soc 85:1441CrossRefGoogle Scholar
  18. 18.
    Rayner-Canham G, Overton T (2002) Descriptive inorganic chemistry, ch 13, 3rd edn. WH Freeman and Company, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Chia-Chen Li
    • 1
    Email author
  • Jyh-Tsung Lee
    • 2
  • Yi-Ling Tung
    • 1
  • Chang-Rung Yang
    • 2
  1. 1.Department of Materials & Mineral Resources EngineeringNational Taipei University of TechnologyTaipeiTaiwan, ROC
  2. 2.Material and Chemical Research LaboratoriesIndustrial Technology Research InstituteChutung, HsinchuTaiwan, ROC

Personalised recommendations