Journal of Materials Science

, Volume 42, Issue 15, pp 6046–6055 | Cite as

Investigation of the ceramifying process of modified silicone–silicate compositions

  • Jaleh Mansouri
  • Chris A. Wood
  • Katherine Roberts
  • Yi-Bing Cheng
  • Robert P. Burford


Glass frits were added into silicone-based composites with the aim to improve low temperature ceramification at elevated temperatures. The effect of glass frits on the properties of ceramic residue is investigated. Field emission scanning electron microscopy (FESEM), electron probe microchemical analysis (EPMA) and X-ray diffraction analysis (XRD) showed that glass frits reacted via a eutectic reaction with mica and silica. Electrical conductivity measurements at elevated temperatures showed a decline in volume resistivity with glass frit addition. It was concluded that increased conductivity is a result of ionic conduction of the glass phase produced by eutectic reactions between frits, silica and mica at high temperatures. Thermal mechanical analysis (TMA) was used to explore the dimensional changes of these composites during programmed heat treatment.


PDMS Flexural Strength Eutectic Reaction Dimensional Change Liquid Phase Sinter 



The authors thank Dr E. Slansky for his help with the XRD analysis, Ms Irene Wainwright for her help with the XRF analysis and Mr B. Searle for his help with the EPMA.


  1. 1.
    Lipowitz J (1982) J Fire Flammability 15:39Google Scholar
  2. 2.
    Hshieh FY (1998) Fire Mater 22:69CrossRefGoogle Scholar
  3. 3.
    Buch RR (1991) Fire Saf J 17:1CrossRefGoogle Scholar
  4. 4.
    Lipowitz J (1976) Fire Flammability 7:482Google Scholar
  5. 5.
    Kashiwagi T, Clearly G, Davis GC, Lupinski JH (1993) A non-halogenated, flame retarded polycarbonate. In: Proceedings of the international conference for the promotion of advanced fire resistant aircraft interior materials. Federal Aviation Administration Technical Center, Atlantic City, New Jersey, p 157Google Scholar
  6. 6.
    Baldus HP, Wagner O, Jamsen M (1992) Mater Res Soc Symp Proc 271:821CrossRefGoogle Scholar
  7. 7.
    Riedel R, Passing G, Schonfelder H, Brook RJ (1992) Nature 355:714CrossRefGoogle Scholar
  8. 8.
    Dvornic PR, Lenz RW (1990) High temperature siloxane elastomers. Huethig & Wepf Verlag, New YorkGoogle Scholar
  9. 9.
    Dennis H, Zhu HD, Kantor SW, Macknight WJ (1998) In: Lyon RE (ed) Fire resistant materials: progress report, Final Report DOT/FAA/AR-97/100. U.S. Department of Transportation, Washington, DC, November 1998, p 59Google Scholar
  10. 10.
    Lauter U, Kantor SW, Schmidt-Rohr K, Macknight WJ (1999) Macromolecules 32:3426CrossRefGoogle Scholar
  11. 11.
    Zhu HD, Kantor SW Macknight WJ (1998) Macromolecules 31:850CrossRefGoogle Scholar
  12. 12.
    Weil ED (1987) Plastics compounding (January–February) 31:40Google Scholar
  13. 13.
    Marosi G, Marton A, Anna P, Bertalan G (2002) Polym Degrad Stab 77:259CrossRefGoogle Scholar
  14. 14.
    Marosi G, Csontos I, Ravadits I, Anna P, Bertalanand G, Toth A (1999) Recent Adv Flame Retard Polym Mater 10:88Google Scholar
  15. 15.
    Marosi G, Ravadits I, Bertalan G, Anna P, Maatoug MA (1998) In: Fire retardancy of polymers: the use of intumescence. The Royal Chemical Society, Cambridge, p 325CrossRefGoogle Scholar
  16. 16.
    Hepburn DM, Kemp IJ, Shields AJ (2000) IEEE Elect Insul Mag 16(5):18CrossRefGoogle Scholar
  17. 17.
    Mansouri J, Burford RP, Cheng YB, Hanu L (2005) J Mater Sci 40:5741CrossRefGoogle Scholar
  18. 18.
    Mansouri J, Burford RP, Cheng Y-B (2006) Mater Sci Eng A 425:7CrossRefGoogle Scholar
  19. 19.
    Norrish K, Hutton JT (1969) Geochim Cosmochim 33:431CrossRefGoogle Scholar
  20. 20.
    Barlow G, Manning DA (1998) Br Ceram Soc Trans 97:122Google Scholar
  21. 21.
    Fujino S, Ijiri H, Shimizu F, Morinaga K (1998) J Jpn Inst Metals 62(1):106CrossRefGoogle Scholar
  22. 22.
    Meunier M, Currie JF, Wertheimer MR, Yelon A (1983) J Appl Phys 54(2):898CrossRefGoogle Scholar
  23. 23.
    Ngai KL (1996) J Non-Cryst Solids 203(1):232CrossRefGoogle Scholar
  24. 24.
    Ungureanu MC, Levy M, Souquet JL (2000) Ceramics—Silikaty 44(3):81Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jaleh Mansouri
    • 1
    • 4
  • Chris A. Wood
    • 3
  • Katherine Roberts
    • 4
  • Yi-Bing Cheng
    • 2
    • 4
  • Robert P. Burford
    • 1
    • 4
  1. 1.School of Chemical Sciences and EngineeringUniversity of New South WalesSydneyAustralia
  2. 2.Department of Materials EngineeringMonash UniversityClaytonAustralia
  3. 3.Air Vehicles Division, Defence Science & Technology OrganisationFisherman’s BendAustralia
  4. 4.Cooperate Research Centre for PolymersNotting HillAustralia

Personalised recommendations