Journal of Materials Science

, Volume 42, Issue 15, pp 6171–6176 | Cite as

Creep behavior of AZ31 magnesium alloy in low temperature range between 423 K and 473 K

  • Ho-Kyung Kim
  • Woo-Jin KimEmail author


The deformation behavior of coarse-grained AZ31 magnesium alloy was examined in creep at low temperatures below 0.5 Tm and low strain rates below 5 × 10−4 s−1. The creep test was conducted in the temperature range between 423 and 473 K (0.46–0.51 Tm) under various constant stresses covering the strain rate range 5 × 10−8 s−1–5 × 10−4 s−1. All of the creep curves exhibited two types depending on stress level. At low stress (σ/G < 4 × 103), the creep curve was typical of class I behavior. However, at high stresses (σ/G > 4 × 103), the creep curve was typical of class II. At the low stress level, deformation could be well described by solute drag creep whereas at the high stress level, deformation could be well described by dislocation climb creep associated with pipe diffusion or lattice diffusion. The transition of deformation mechanism from solute drag creep to dislocation climb creep, on the other hand, could be explained in terms of solute-atmosphere-breakaway concept.


Creep Rate Creep Test Stress Exponent Creep Curve Lattice Diffusion 


  1. 1.
    Friedrich H, Schumann S (2001) J Mater Process Technol 117:276CrossRefGoogle Scholar
  2. 2.
    Luo AA (2004) Int Mater Rev 49:13CrossRefGoogle Scholar
  3. 3.
    Vagarali SS, Langdon TG (1981) Acta Metall 29:1969CrossRefGoogle Scholar
  4. 4.
    Vagarali SS, Langdon TG (1982) Acta Metall 30:1157CrossRefGoogle Scholar
  5. 5.
    Kim WJ, Chung SW, Chung CS, Kum D (2001) Acta Mater 49:3337CrossRefGoogle Scholar
  6. 6.
    Chung SW, Watanabe H, Kim WJ, Higashi K (2004) Mater Trans 45:1266CrossRefGoogle Scholar
  7. 7.
    Somekawa H, Hirai K, Watanabe H, Tagigawa Y, Higashi K (2005) Mater Sci Eng A 407:53CrossRefGoogle Scholar
  8. 8.
    Spigarelli S, Cabibbo M, Evangeliast E, Talianker M, Ezersky V (2000) Mater Sci Eng A 289:172CrossRefGoogle Scholar
  9. 9.
    Shi L, Northwood DO (1994) Acta Metall 42:871CrossRefGoogle Scholar
  10. 10.
    Evangerlista E, Spigarelli S, Cabibbo M, Scalabroni C, Lohne O, Ulseth P (2005) Mater Sci Eng A 410:62CrossRefGoogle Scholar
  11. 11.
    Kim HK, Mohamed FA, Earthman JC (1991) J Test Eval 19:93CrossRefGoogle Scholar
  12. 12.
    Isshiki K et al (1997) Metal Mater Trans 28A:2577CrossRefGoogle Scholar
  13. 13.
    Cannon WR, Sherby OD (1970) Metall Trans 1:1030Google Scholar
  14. 14.
    Robinson SL, Sherby OD (1969) Acta Metall 17:109CrossRefGoogle Scholar
  15. 15.
    Frost HJ, Ashby MF (1982) In: Deformation—Mechanisms Maps. Pergamon Press, Oxford, p 121Google Scholar
  16. 16.
    Moreau G, Cornet JA, Calais D (1977) J Nucl Mater 38:197CrossRefGoogle Scholar
  17. 17.
    Shewmon PG, Rhines FN (1954) Trans Am Inst Min Engrs 200:1021Google Scholar
  18. 18.
    Weertman J (1957) J Appl Phys 28:1185CrossRefGoogle Scholar
  19. 19.
    Takeuchi S, Argon AS (1976) Acta Metall 24:883CrossRefGoogle Scholar
  20. 20.
    Friedel J (1964) In: Dislocations. Pergamon Press, Oxford, p 54CrossRefGoogle Scholar
  21. 21.
    King HW (1966) J Mater Sci 1:79CrossRefGoogle Scholar
  22. 22.
    Endo T, Shimada T, Langdon TG (1984) Acta Metall 32:1991CrossRefGoogle Scholar
  23. 23.
    Kuchařová K, Saxl I, Cadek J (1974) Acta Metall 22:465CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Automotive EngineeringSeoul National University of TechnologySeoulKorea
  2. 2.Department of Materials Science and EngineeringHongik UniversitySeoulKorea

Personalised recommendations