Journal of Materials Science

, Volume 42, Issue 14, pp 5766–5772 | Cite as

Effect of oxygen partial pressure on the electrical and optical properties of highly (200) oriented p-type Ni1−xO films by DC sputtering

  • Suman Nandy
  • Biswajit Saha
  • Manoj K. Mitra
  • K. K. ChattopadhyayEmail author


Thin films of NiO (bunsenite) with (200) preferential orientation were synthesized on glass substrates by direct current sputtering technique in Ar+O2 atmosphere. Nanostructural properties of the NiO films were investigated by X-ray diffraction and also by atomic force microscopic (AFM) studies. Electrical and optical properties of the deposited films were investigated as a function of different partial pressure of oxygen in the sputtering gas mixture during deposition. The films showed p-type electrical conduction and the conductivity depends on the partial pressure of oxygen. The electrical conductivity (σRT) was found to be .0615 S cm−1 for films deposited with 100% O2 and its value sharply decreased with the decrease the partial pressure of O2; for example σRT for 50% O2 was 6.139 × 10−5 S cm-1. The mechanism of the origin of p-type electrical conductivity in the NiO film is discussed from the viewpoint of nickel or oxygen vacancies, which generate holes and electrons respectively. X-ray photoelectron spectroscopic studies supported the above argument. Corresponding optical properties showed that the transparency decreases with increasing oxygen partial pressure and the bandgap also decreases.


Oxygen Partial Pressure Nickel Oxide Increase Oxygen Partial Pressure Bunsenite Nickel Vacancy 



The authors wish to thank Department of Science and Technology (DST), Govt. of India for financial support. The authors also wish to thank the University Grants Commission (UGC), Govt. of India, for providing some characterizational facilities under the ‘University with potential for Excellence’ scheme during the execution of the work. One of (BS) also wishes to thank UGC for awarding a junior research fellowship (JRF) during the execution of the work.


  1. 1.
    Swagten HJM, Strijkers GJ, Bloemen PJH, Willekens MMH, De Jonge WJM (1996) Phys Rev B 53:1039CrossRefGoogle Scholar
  2. 2.
    Carey MJ, Berkowitz AE (1993) J Appl Phys 73:6892CrossRefGoogle Scholar
  3. 3.
    Soeya S, Hoshiya H, Meguro K, Fukui H (1997) Appl Phys Lett 71:3424CrossRefGoogle Scholar
  4. 4.
    Hwang DG, Lee SS, Park CM (1998) Appl Phys Lett 72:2162CrossRefGoogle Scholar
  5. 5.
    Koide S (1965) J Phys Soc Jpn 20:123CrossRefGoogle Scholar
  6. 6.
    Hotovy I, Huran J, Siciliano P, Capone S, Spiess L, Rehacek V (2001) Sens Actuators B Chem 78:126CrossRefGoogle Scholar
  7. 7.
    Kumagai H, Matsumoto M, Toyoda K, Obara M (1996) J Mater Sci Lett 15:108CrossRefGoogle Scholar
  8. 8.
    Kitao M, Izawa K, Urabe K, Komatsu T, Kuwano S, Yam S (1994) Jpn J Appl Phys 33:6656CrossRefGoogle Scholar
  9. 9.
    Chan IM, Hsu TY, Hong FC (2002) Appl Phys Lett 81:1899CrossRefGoogle Scholar
  10. 10.
    Nishizawa S, Tsurumi T, Hyodo H, Ishibashi Y, Ohashi N, Yamane M, Fukunaga O (1997) Thin Solid Films 302:133CrossRefGoogle Scholar
  11. 11.
    Yu GH, Zeng LR, Zhu FW, Chai CL, Lai WY (2001) J Appl Phys 90:4039CrossRefGoogle Scholar
  12. 12.
    Otterman CR, Temmink A, Bange K (1990) Thin Solid Films 193–194:409CrossRefGoogle Scholar
  13. 13.
    Manago T, Ono T, Miyajima H, Yamaguchi I, Kawaguchi K, Sohma M (2000) Thin Solid Films 374:21CrossRefGoogle Scholar
  14. 14.
    Jiao Z, Wu MG, Qin Z, Xu H (2003) Nanotechnology 14:458CrossRefGoogle Scholar
  15. 15.
    Chen X, Wu NJ, Smith L, Ignatiev A (2004) Appl Phys Lett 84:14Google Scholar
  16. 16.
    Terakura K, Williams AR, Oguchi T, Kübler J (1984) Phys Rev B 40:4734CrossRefGoogle Scholar
  17. 17.
    Antolini E (1992) J Mater Sci 27:3335CrossRefGoogle Scholar
  18. 18.
    Cox PA (1998) The electronic structure and chemistry of solids. Oxford Science Publications, Oxford. Chapter 5.3Google Scholar
  19. 19.
    Tuller HL (1981) In: Sørensen OT (ed) Nonstoichiometric oxides. Academic Press, San Diego, Chapter 6Google Scholar
  20. 20.
    Banerjee AN, Ghosh CK, Das S, Chattopadhyay KK (2005) Physica B 370:264CrossRefGoogle Scholar
  21. 21.
    J.C.P.D.S. Powder Diffraction File Card 04-0850Google Scholar
  22. 22.
    Lee M, Seo S, Seo D, Jeong E, Yoo IK. Section j: multiferroics and graded ferroelectricsGoogle Scholar
  23. 23.
    Green DW, Reedy GT, Kay JG (1979) J Mol Spectrosc 78:257CrossRefGoogle Scholar
  24. 24.
    Bauschlicher CW Jr, Nelin CJ, Bagus PS (1985) J Chem Phys 82:3265CrossRefGoogle Scholar
  25. 25.
    Walch SP, Goddard WA III (1978) J Am Chem Soc 100:1338CrossRefGoogle Scholar
  26. 26.
    Bauschlicher CW Jr (1985) Chem Phys 93:399CrossRefGoogle Scholar
  27. 27.
    Friedman-Hill EJ, Field RW (1992) J Mol Spectrosc 155:259CrossRefGoogle Scholar
  28. 28.
    Bauschlicher CW Jr, Maitre P (1995) Theor Chim Acta 90:189CrossRefGoogle Scholar
  29. 29.
    Vicki DM, Jarrold CC (1998) J Chem Phys 108(5):1804CrossRefGoogle Scholar
  30. 30.
    Kofstad P (1972) Non-stoichiometry, diffusion, and electrical conductivity in binarymetal oxidex. Wiley, New York, p 252Google Scholar
  31. 31.
    Kofstad P (1972) Non-stoichiometry, diffusion, and electrical conductivity in binary metal oxidex. Wiley, New York, p 44Google Scholar
  32. 32.
    Kingery WD, Bowen HK, Ulhmann DL (1976) Introduction to ceramic, 2nd edn. Wiley, New York, p 899Google Scholar
  33. 33.
    Rees ALG (1954) Chemistry of the defect solid state. John Wiley and sons Inc., New YorkGoogle Scholar
  34. 34.
    Fogler HS (1992) Elements of chemical reaction engineering, 2nd edn. Prentice-Hall, New York, p 254Google Scholar
  35. 35.
    Dirksen JA, Duval K, Ring TA (2001) Sens Actuators B 80:106CrossRefGoogle Scholar
  36. 36.
    Dummer GWA (1970) Materials for conductive and resistive function. Hayden Book Company Inc., New YorkGoogle Scholar
  37. 37.
    Walter JM (1967) Seven solid states. Benjamin, New YorkGoogle Scholar
  38. 38.
    Wanger CD, Riggs WM, Davis LE, Moulder JF (1979) Handbook of X-ray photoelectron spectroscopy. PHI, Eden Prairie, MinnesotaGoogle Scholar
  39. 39.
    Lu YM, Hwang WS, Yang JS, Chuang HC (2002) Thin Solid Films 420–421:54CrossRefGoogle Scholar
  40. 40.
    Pankove JI (1971) Optical process in semiconductors. Prentice Hall, Inc., New Jersey, p 34Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Suman Nandy
    • 1
  • Biswajit Saha
    • 1
  • Manoj K. Mitra
    • 2
  • K. K. Chattopadhyay
    • 1
    • 2
    Email author
  1. 1.Thin Film & Nanoscience Laboratory, Department of PhysicsJadavpur UniversityKolkataIndia
  2. 2.Nanoscience and Technology CenterJadavpur UniversityKolkataIndia

Personalised recommendations