Advertisement

Journal of Materials Science

, Volume 42, Issue 15, pp 5954–5958 | Cite as

Influence of arsenic, antimony and phosphorous on the microstructure and corrosion behavior of brasses

  • R. Karpagavalli
  • R. BalasubramaniamEmail author
Article
  • 126 Downloads

Abstract

The effect of minor additions of As, Sb and P on phase distribution and corrosion behavior has been studied in brasses. The alloys investigated were 60Cu–39Zn–1Pb, 48.95Cu–45Zn–5Pb–1Sn–0.05As, 48.90Cu–45Zn–5Pb–1Sn–0.05As–0.05Sb and 48.85Cu–45Zn–5Pb–1Sn–0.05As–0.05Sb–0.05P. Immersion tests in 1% CuCl2 solution indicated that the addition of As improved corrosion resistance while the combined addition of As + Sb and As + Sb + P was not beneficial. The hardness increased significantly with the addition of As, Sb and P. Microstructural observations indicated an increase in β phase fraction in the As, Sb and P containing alloys. X-ray diffraction studies confirmed the formation of intermetallic compounds in As, Sb and P containing alloys. Based on the microstructural observations, the intermetallic compounds appear to be primarily precipitated in the β phase with As + Sb and As + Sb + P additions. The lower corrosion resistance of the alloys 48.90Cu–45Zn–5Pb–1Sn–0.05As–0.05Sb and 48.85Cu–45Zn–5Pb–1Sn–0.05As–0.05Sb–0.05P has been related to increase in β phase volume fraction and precipitation of intermetallic compounds in the β phase.

Keywords

Corrosion Resistance Intermetallic Compound Corrosion Behavior Stress Corrosion Thickness Reduction 

References

  1. 1.
    Kabasakaloglu M, Kiyak T, Sendil O, Asan A (2002) Appl Surf Sci 193:167CrossRefGoogle Scholar
  2. 2.
    Guo XJ, Gao KW, Qiao LJ, Chu WY (2002) Corrosion Sci 44:2367CrossRefGoogle Scholar
  3. 3.
    You SJ, Choi YS, Kim JG, Oh HJ, Chi CS (2003) Mater Sci Eng A 345:207CrossRefGoogle Scholar
  4. 4.
    Lehockey EM, Brennenstuhl AM, Thompson I (2004) Corrosion Sci 46:2383CrossRefGoogle Scholar
  5. 5.
    Morales J, Esparza P, Fernandez GT, Gonzalez G, Garcia JE, Caceres J, Salvarezza RC, Arvia AJ (1995) Corrosion Sci 37:231CrossRefGoogle Scholar
  6. 6.
    Sayed SM, Ashour EA, Youssef GI (2003) Mater Chem Phys 78:825CrossRefGoogle Scholar
  7. 7.
    Valcarce MB, Sanchez SR, Vazquez M (2005) Corrosion Sci 47:795CrossRefGoogle Scholar
  8. 8.
    Bevolo AJ, Baikerikar KG, Hansen RS (1984) J Vac Sci Technol A 2:784CrossRefGoogle Scholar
  9. 9.
    Morales J, Fernandez GT, Esparza P, Gonzalez S, Salvarezza RC, Arvia AJ (1995) Corrosion Sci 37:211CrossRefGoogle Scholar
  10. 10.
    Badawy WA, El-Egamy SS, El-Azab AS (1995) Corrosion Sci 37:1969CrossRefGoogle Scholar
  11. 11.
    Zou JY, Wang DH, Qiu WC (1997) Electrochim Acta 42:1733CrossRefGoogle Scholar
  12. 12.
    Langenegger EE, Robinson FPA (1969) Corrosion 25:137CrossRefGoogle Scholar
  13. 13.
    Zengcai L, Leyun L, Jie X (1999) Rare Metals 18:241Google Scholar
  14. 14.
    Newman RC, Shahrabi T, Sieradzki K (1988) Corrosion Sci 28:873CrossRefGoogle Scholar
  15. 15.
    Luo X, Yu J (1996) Corrosion Sci 38:767CrossRefGoogle Scholar
  16. 16.
    Bowers JE (1982) Metallurgia 49:55Google Scholar
  17. 17.
    Torchio S (1981) Corrosion Sci 21:425CrossRefGoogle Scholar
  18. 18.
    Mazza F, Torchio S (1983) Corrosion Sci 23:1053CrossRefGoogle Scholar
  19. 19.
    Zucchi F, Trabanelli G, Fonsati M, Giusti A (1998) Mater Corrosion 49:864CrossRefGoogle Scholar
  20. 20.
    Hultgren R, Desai PD, Hawkins DT, Gleiser M, Kelley KK (1973) Selected values of the thermodynamic properties of binary alloys. American Society for Metals, Metals park, Ohio, p 812Google Scholar
  21. 21.
    Mazza F, Torchio S (1983) Corrosion Sci 23:1053CrossRefGoogle Scholar
  22. 22.
    Song GS, Staiger M, Kral M (2004) Mater Sci Eng A 371:371CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Materials and Metallurgical EngineeringIndian Institute of TechnologyKanpurIndia

Personalised recommendations