Journal of Materials Science

, Volume 42, Issue 15, pp 6102–6107 | Cite as

The effect of austenitizing time on martensite morphologies and magnetic properties of martensite in Fe–24.5%Ni–4.5%Si alloy

  • H. GungunesEmail author
  • E. Yasar
  • T. N. Durlu


The effect of austenitizing time on the formation of martensite in Fe–24.5%Ni–4.5%Si alloy has been studied by means of transmission electronmicroscope (TEM), scanning electronmicroscope (SEM) and Mössbauer spectroscopy technique. TEM and SEM observations revealed that the martensite morphology was found to be closely dependent on the austenitizing time. The orientation relationship between austenite and thermally induced martensite was found as the Kurdjumov-Sachs type. The volume fraction changes of martensite and austenite phases, the hyperfine magnetic field of martensite phase and isomery shift values have been determined by Mössbauer spectroscopy. The Mössbauer study also revealed that the martensite volume fractions increased with increasing austenite grain size.


Austenite Martensite Habit Plane Select Area Diffraction Pattern Lath Martensite 



One of the authors (H.G) is grateful to Dr. E. Guler with experimental work.


  1. 1.
    Seo SB, Jun JH, Choi CS (2000) ISIJ Int 34:91CrossRefGoogle Scholar
  2. 2.
    Durlu TN (2001) J Mater Sci 36:5665CrossRefGoogle Scholar
  3. 3.
    Umemoto M, Tamura I (1982) In: Delaey L, Chandrasekaran M (eds) Proceedings of the international conference on martensitic transformations, 1982 (ICOMAT 82). Belgium, p C4-523Google Scholar
  4. 4.
    Himuro Y, Kainuma R, Ishida K (2002) ISIJ Int 42:184CrossRefGoogle Scholar
  5. 5.
    Durlu TN (1996) J Mater Sci Lett 15:1510CrossRefGoogle Scholar
  6. 6.
    Morito S, Tanaka H, Konishi R, Furuhara T, Maki T (2003) Acta Mater 51:1789CrossRefGoogle Scholar
  7. 7.
    Jiewu Z, Yan X, Liu Y (2004) Mater Sci Eng A385:440CrossRefGoogle Scholar
  8. 8.
    Zeng DC, Tan YH, Qiao GW, Chuang YC (1994) Z Metallkunde 85:203Google Scholar
  9. 9.
    Zararsiz A, Gedikoglu A, Durlu TN (1981) Scripta Metall 15:595CrossRefGoogle Scholar
  10. 10.
    Durlu TN (1992) J Mater Sci Lett 11:702CrossRefGoogle Scholar
  11. 11.
    Aydin A, Guler E, Aktas H, Gungunes H (2002) Bull Mater Sci 25:359CrossRefGoogle Scholar
  12. 12.
    Tamura I, Maki T, Hato H (1969) J Jpn Inst Metals 33:1376CrossRefGoogle Scholar
  13. 13.
    Durlu TN (1996) J Mater Sci 31:2585CrossRefGoogle Scholar
  14. 14.
    Zhang XM, Gautier E, Simon A (1989) Acta Metall 37:487CrossRefGoogle Scholar
  15. 15.
    Gautier E, Zhang J, Zhang X, Hu TR (1994) In: Johnson WC, Howe JM, Laughin DE, Soffa WA (eds) Proceedings of the international conference on solid solid phase transformations, July 17–22, 1994, The Minerals, Metals and Materials Society, Pennsylvania, p 847Google Scholar
  16. 16.
    Durlu TN (1978) Acta Metall 26:1855CrossRefGoogle Scholar
  17. 17.
    Wang S, Wen YH, Zhang X (1993) In: Wayman CM, Perkins J (eds) Proceedings of the international conference on martensitic transformations, 1992 (ICOMAT 92). Monterey Institute for Advanced Studies, Monterey, California, p 281Google Scholar
  18. 18.
    Panissod P, Durand J, Budnick JI (1982) Nucl Instr Methods 199:99CrossRefGoogle Scholar
  19. 19.
    Yamauchi K, Mizoguchi T (1975) J Phys Soc Jpn 39:541CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PhysicsScience and Arts Faculty of Hitit UniversityCorumTurkey
  2. 2.Department of PhysicsScience and Arts Faculty of Kırıkkale UniversityYahsihan, KirikkaleTurkey
  3. 3.Department of PhysicsScience Faculty of Ankara UniversityTandogan, AnkaraTurkey

Personalised recommendations