Advertisement

Journal of Materials Science

, Volume 42, Issue 10, pp 3495–3501 | Cite as

Production of natural carotene-dispersed polymer microparticles by SEDS-PA co-precipitation

  • Wenzhi He
  • Quanling Suo
  • Hailong Hong
  • A Shan
  • Chunping Li
  • Yanchun Huang
  • Yunxia Li
  • Mingda Zhu
Article

Abstract

In this work, composite microparticles of poly (ethylene glycol) (PEG) loaded with natural carotene were successfully produced using solution enhanced dispersion by supercritical fluids through prefilming atomization (SEDS-PA) process. The characteristics of dispersion of carotene in the polymeric drug carrier were analyzed by color difference between carotene and PEG using optical micrographs. The morphologies and particle sizes (PSs) of the composite microparticles were studied by SEM micrographs. The precipitates were amorphous particles of PEG embedded with flake-like natural carotene crystals. The carotene degradation of the carotene/PEG composite microparticles was substantially lessened under the protection of PEG carrier in comparison with that of carotene microparticles. With the increase of the carotene content added in solution, the PSs of carotene crystals dispersed into the PEG carrier increase, the carotene loading yields in the composite microparticles (Wc2) obviously increased, whereas PSs of these composite particles slightly decreased. Higher operating temperature resulted in formation of bigger coalesced composite particles and the substantial increase of Wc2. With increase of operating pressure PSs decreased, whereas no clear dependence of Wc2 was obtained on it.

Keywords

Carotene Composite Particle Bixin Carotene Content Composite Microparticle 

Notes

Acknowledgements

The authors gratefully acknowledge the financial supports of the national natural science foundation of China (Grant No. 20266004), of 863 project of China (Grant No. 2003AA2Z3533) and of natural science foundation of Inner Mongolia (China) (Grant No. 200308020203).

References

  1. 1.
    Jung J, Perrut M (2001) J Supercrit Fluids 20:179CrossRefGoogle Scholar
  2. 2.
    Labhasetwar V, Song CX, Levy RJ (1997) Adv Drug Delivery Rev 24:63CrossRefGoogle Scholar
  3. 3.
    Langer R (1990) Science 249:1527CrossRefGoogle Scholar
  4. 4.
    Elvassore N, Bertucco A, Caliceti P (2001) Ind Eng Chem Res 40:795CrossRefGoogle Scholar
  5. 5.
    Reverchon E, Della porta G (2003) Chem Eng Technol 26:840CrossRefGoogle Scholar
  6. 6.
    Debenedetti P, Tom JW, Yeo SD, Lim GB (1993) J Controlled Release 24:27CrossRefGoogle Scholar
  7. 7.
    Mishima K, Matsuyama K, Tanabe D, Yamauchi S (2000) AIChE J 46:857CrossRefGoogle Scholar
  8. 8.
    Matsuyama K, Mishima K, Hayashi KI, Ishikawa H, Matsuyama H, Harada T (2003) J Appl Polym Sci 89:742CrossRefGoogle Scholar
  9. 9.
    Gosselin PM, Thibert R, Preda M, Mcmullen JN (2003) Int J Pharm 252:225CrossRefGoogle Scholar
  10. 10.
    Benedetti L, Bertucco A, Pallado P (1997) Biotechnol Bioeng 53:232CrossRefGoogle Scholar
  11. 11.
    Yeo SD, Kim MS, Lee JC (2003) J Supercrit Fluids 25:143CrossRefGoogle Scholar
  12. 12.
    Heater KJ, Tomasko DL (1998) J Supercrit Fluids 14:55CrossRefGoogle Scholar
  13. 13.
    Liu ZM, Wang JQ, Song LP, Yang GY, Han BX (2002) J Supercrit Fluids 24:1CrossRefGoogle Scholar
  14. 14.
    Reverchon E, De Marco I, Caputo G, Della Porta G (2003) J Supercrit Fluids 26:1CrossRefGoogle Scholar
  15. 15.
    Reverchon E, De Marco I, Della Porta G (2002) J Supercrit Fluids 23:81CrossRefGoogle Scholar
  16. 16.
    Sarkari M, Darrat I, Knutson BL (2000) AIChE J 46:1850CrossRefGoogle Scholar
  17. 17.
    Ghaderi R, Artursson P, Carlfors J (1999) Pharm Res 16:676CrossRefGoogle Scholar
  18. 18.
    York P (1995) Pharm Res 12:S141Google Scholar
  19. 19.
    Palakodaty S, York P, Pritchard J (1998) Pharm Res 15:1835CrossRefGoogle Scholar
  20. 20.
    Moshashaee S, Bisrat M, Forbes RT, Nyqvist H, York P (2000) Eur J Pharm Sci 11:239CrossRefGoogle Scholar
  21. 21.
    Juppo AM, Boissier C, Khoo C (2003) Int J Pharm 250:385CrossRefGoogle Scholar
  22. 22.
    Ghaderi R, Artursson P, Carlfors J (2000) Eur J Pharm Sci 10:1CrossRefGoogle Scholar
  23. 23.
    Elvassore N, Bertucco A, Caliceti P (2001) J Pharm Sci 90:1628CrossRefGoogle Scholar
  24. 24.
    Tservistas M, Levy MS, Lo-Yim MYA, O’kennedy RD, York P, Humphrey GO, Hoare M (2001) Biotechnol Bioeng 72:12CrossRefGoogle Scholar
  25. 25.
    Wang Y, Dave RN, Pfeffer R (2004) J Supercrit Fluids 28:85CrossRefGoogle Scholar
  26. 26.
    He WZ, Suo QL, Jiang ZH, A S, Hong HL (2004) J Supercrit Fluids 31:101CrossRefGoogle Scholar
  27. 27.
    Suo QL, He WZ, Huang YC, Li CP, Hong HL, Li YX, Zhu MD (2005) Powder Technol 154:110CrossRefGoogle Scholar
  28. 28.
    He WZ, Suo QL, Hong HL, Li GM, Zhao XH, Li CP, A S (2006) Ind Eng Chem Res 45:2108CrossRefGoogle Scholar
  29. 29.
    GB8821-88 (The state standard of P. R. China)Google Scholar
  30. 30.
    Chiou JS, Barlow JW, Paul DR (1985) J Appl Polym Sci 30:2638Google Scholar
  31. 31.
    Wissinger RG, Paulaitis ME (1987) J Polym Sci: Part B Polym Phys 25:2497CrossRefGoogle Scholar
  32. 32.
    Sanders ES (1988) J Membr Sci 37:63CrossRefGoogle Scholar
  33. 33.
    Reverchon E, Della Porta G, De Rosa I, Subra P, Letourneur D (2000) J Supercrit Fluids 18:239CrossRefGoogle Scholar
  34. 34.
    Mukhopadhyay M (2003) J Supercrit Fluids 25:213CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Wenzhi He
    • 1
    • 2
  • Quanling Suo
    • 1
  • Hailong Hong
    • 1
  • A Shan
    • 1
  • Chunping Li
    • 1
  • Yanchun Huang
    • 3
  • Yunxia Li
    • 3
  • Mingda Zhu
    • 1
  1. 1.College of Chemical EngineeringInner Mongolia University of TechnologyHohhotP.R. China
  2. 2.School of Environmental Science and EngineeringTongji UniversityShanghaiP.R. China
  3. 3.College of Chemistry and Environment ScienceInner Mongolia Normal UniversityHohhotP.R. China

Personalised recommendations