Advertisement

Journal of Materials Science

, Volume 42, Issue 24, pp 10284–10287 | Cite as

High voltage characterization of tin oxide varistors

  • Renaud MetzEmail author
  • Jonathan Morel
  • Mourad Houabes
  • Julien Pansiot
  • Merdad Hassanzadeh
Article

Abstract

High current characterization of SnO2-based varistors have been carried out and the results obtained have been compared with those ZnO-based commercial surge arresters. It is shown that for a high temperature sintering (1350 °C), the leakage current, breakdown voltage and the saturation at high current density are similar between both types of surge arresters. The paper shows, for the first time, that the high breakdown voltage observed with tin dioxide cannot be easily maintained since the saturation of the ceramics is reached for current densities of several amperes per square centimetre.

Keywords

SnO2 Nb2O5 Breakdown Voltage Linear Coefficient Breakdown Field 

References

  1. 1.
    Meng F (2005) Mater Sci Eng B 117:77CrossRefGoogle Scholar
  2. 2.
    Santhosh PN, Kharat DK, Date SK (1996) Mater Lett 28(1–3):37CrossRefGoogle Scholar
  3. 3.
    Wang Y, Yang XS, Liu ZL, Yao KL (2004) Mater Lett 58(6):1017CrossRefGoogle Scholar
  4. 4.
    Yu W, Yifan H, Min C (1995) Gongneng Cailiao 26(6):521Google Scholar
  5. 5.
    Bueno PR, Varela JA, Barrado CM, Longo E, Leite ER (2005) J Am Ceram Soc 88(9):2629CrossRefGoogle Scholar
  6. 6.
    Metz R, Delalu H, Vignalou JR, Achard N, Elkhatib M (2000) Mater Chem Phys 63:157CrossRefGoogle Scholar
  7. 7.
    Margionte MAL, Simoes AZ, Riccardi CS, Ries A, Filho FM, Perazolli L, Varela JA (2006) Mater Lett 60:142CrossRefGoogle Scholar
  8. 8.
    Pianaro SA, Bueno PR, Longo E, Varela JA (1995) J Mater Sci Lett 14:692CrossRefGoogle Scholar
  9. 9.
    Wang C, Chen J, Zhong W, Qi P (2005) Mater Chem Phys 92(1):118CrossRefGoogle Scholar
  10. 10.
    Antunes AC, Antunes SM, Pianaro SA, Longo E, Varela JA (2000) J Mater Sci 35:1453 (doi: 10.1023/A:1004748006457)CrossRefGoogle Scholar
  11. 11.
    Wang J-F, Chen H-C, Su W-B, Zang G-Z, Wang B, Gao R-W (2006) J Alloy Comp (in press)Google Scholar
  12. 12.
    Cassia-santos MR, Sousa VC, Oliveira MM, Sensato FR, Bacelar WK, Gomes JW, Longo E, Leite ER, Varela JA (2005) Mater Chem Phys 90:1CrossRefGoogle Scholar
  13. 13.
    Dibb A, Tebcherani SM, Lacerda Jr W, Santos MRC, Cilense M, Varela JA, Longo E (2000) Mater Lett 46:39CrossRefGoogle Scholar
  14. 14.
    Wang C-M, Wang J-F, Su W-B, Chen H-C, Wang C-L, Zhang J-L, Zang G-Z, Qi P, Gai Z-G, Ming B-Q (2006) Mater Sci Eng B (in press)Google Scholar
  15. 15.
    Mi C, Wang J, Su W, Chen H, Wang W, Zhuang D (2001) Physica B 307:1CrossRefGoogle Scholar
  16. 16.
    Fayat J, Castro MS (2003) J Euro Ceram Soc 23:1585CrossRefGoogle Scholar
  17. 17.
    Li CP, Wang JF, Su WB, Chen HC, Wang WX, Zhuang DX, Xu L (2001) Euro Phys J: Appl Phys 16:3Google Scholar
  18. 18.
    Menegotto GF, Pianaro SA, Zara AJ, Antunes SRM, Antunes AC (2002) J Mater Science: Mater Electron 13:253Google Scholar
  19. 19.
    Wang JF, Wang YJ, Su WB, Chen HC, Wang WX (2002) Mater Sci Eng B 96:8CrossRefGoogle Scholar
  20. 20.
    Filho FM, Simoes AZ, Ries A, Perazolli L, Longo E and Varela JA (2006) Ceram Int (in press)Google Scholar
  21. 21.
    Wang C, Wang J, Chen H, Wang W, Su W, Zang G, Qi P (2005) Mater Lett 59:201CrossRefGoogle Scholar
  22. 22.
    Wang C-M, Wang J-F, Wang C-L, Chen H-C, Su W-B, Zang G-Z, Qi P (2005) J Appl Phys 97(12):126CrossRefGoogle Scholar
  23. 23.
    Guo-Zhong Z, Jin-Feng W, Hong-Cun C, Wen-Bin S, Chun-Ming W, Peng Q (2005) Physica B: Condensed Matter (Amsterdam, Netherlands) 367(1–4):29CrossRefGoogle Scholar
  24. 24.
    Antunes AC, Antunes SRM, Pianaro SA, Longo E, Leite ER, Varela JA (2001) J Mater Sci: Mater Electron 12:69Google Scholar
  25. 25.
    Nisiro D, Fabbri G, Celotti C, Bellosi A (2003) J Mater Sci 38:2727(doi: 10.1023/A:1024459307992)CrossRefGoogle Scholar
  26. 26.
    Li CP, Wang JF, Su WB, Chen HC, Wang WX, Zang GZ, Xu L (2002) Ceram Int 28:521CrossRefGoogle Scholar
  27. 27.
    Skuratovsky I, Glot A, Bartolomeo E, Traversa E, Polini R (2004) J Euro Ceram Soc 24:2597CrossRefGoogle Scholar
  28. 28.
    Wang J-F, Chen H-C, Chen W-X, Su W-B, Zang G-Z (2003) Mater Sci Eng, B: Solid-State Mater Adv Technol B99(1–3):465CrossRefGoogle Scholar
  29. 29.
    Cheng-Ju Z, Jin-Feng W, Wen-Bin S, Guo-Zhong Z, Hong-Cun C (2005) (Pt. 1, High-Performance Ceramics III) 280–283:275Google Scholar
  30. 30.
    Ming B-q, Wang J-f, Chen H-c, Su W-b, Zang G-z, Gao J-l (2005) Gongneng Cailiao Yu Qijian Xuebao 11(1):33Google Scholar
  31. 31.
    Skuratovsky I, Glot A (2003) Function Mater 10(2):314Google Scholar
  32. 32.
    Perazolli L, Simoes AZ, Coleto U, Filho F, Gutierrez S, Santos COP, Marques RFC, Varela JA (2005) Mater Lett 59(14–15):1859CrossRefGoogle Scholar
  33. 33.
    Oliveira MM, Bueno PR, Longo E, Varela JA (2002) Mater Chem Phys 74:150CrossRefGoogle Scholar
  34. 34.
    Qi P, Wang J-F, Su W-B, Chen H-C, Zang G-Z, Wang C-M, Ming B-Q (2005) Mater Chem Phys 92:578CrossRefGoogle Scholar
  35. 35.
    Zang G-Z, Wang J-F, Chen H-C, Su W-B, Wang C-M, Qi P, Ming B-Q (2005) (Pt. 1, High-Performance Ceramics III) 280–283:271Google Scholar
  36. 36.
    Wang C-M, Wang J-F, Wang C-L, Chen H-C, Su W-B, Zang G-Z, Qi P, Zhao M-L, Ming B-Q (2004) Chin Phys 13(11):1936CrossRefGoogle Scholar
  37. 37.
    Parra R, Castro MS, Varela JA (2005) J Euro Ceram Soc 25:401CrossRefGoogle Scholar
  38. 38.
    Wang C, Wang J, Chen H, Su W, Zang G, Qi P, zhao M (2005) Mater Sci Eng B 116:54CrossRefGoogle Scholar
  39. 39.
    Qi P, Wang JF, Su WB, Chen H, Zang C, Wang GZ, Ming CM (2005) Mater Sci Eng, B: Solid-State Mater Adv Technol B 119(1):94CrossRefGoogle Scholar
  40. 40.
    Zang G-Z, Wang J-F, Chen H-C, Su W-B, Wang W-X, Qi P, Wang C-M (2004) Gongneng Cailiao Yu Qijian Xuebao 10(1):79Google Scholar
  41. 41.
    Wang JF, Su WB, Chen HC, Wang WX, Zang GZ, Li CP, Bodde S (2005) J Am Ceram Soc 88(2):331CrossRefGoogle Scholar
  42. 42.
    Filho FM, Simoes AZ, Ries A, Souza EC, Perazolli L, Cilense M, Longo E, Varela JA (2005) Ceram Int 31:399CrossRefGoogle Scholar
  43. 43.
    Wang W-X, Wang J-F, Chen H-C, Su W-B, Jiang B, Zang G-Z, Wang C-M, Qi P (2003) J Phys D: Appl Phys 36:1040CrossRefGoogle Scholar
  44. 44.
    Pianaro SA, Bueno PR, Longo E, Varela JA (1997) J Mater Sci Lett 16:634CrossRefGoogle Scholar
  45. 45.
    Wang J-F, Chen H-C, Su W-B, Zang G-Z, Zhang C-J, Wang C-M, Qi P (2005) J Electroceramics 14(2):133CrossRefGoogle Scholar
  46. 46.
    Wang C, Wang J, Chen H, Wang W, Su W, Zang G, Qi P (2003) J Phys D: Appl phys 36:3069CrossRefGoogle Scholar
  47. 47.
    Wang C, Wang J, Chen H, Su W, Zang G, Qi P (2004) Chin Phys Lett 21(4):716CrossRefGoogle Scholar
  48. 48.
    Wang W, Wang J, H.Chen, Su WB, B. Jiang, Zang G, Wang C, Qi P (2005) Ceram Int 31:287CrossRefGoogle Scholar
  49. 49.
    Qi P, Wang J-F, Chen H-C, Su W-B, Wang W-X, Zang G-Z, Wang C-M (2003) Wuli Xuebao 52(7):1752Google Scholar
  50. 50.
    Ming B, Wang J, Chen H, Su W, Zang G, Gao J (2004) Dianzi Yuanjian Yu Cailiao 23(6):20Google Scholar
  51. 51.
    Parra R, Varela JA, Aldao CM, Castro MS (2005) Ceram Int 31(5):737CrossRefGoogle Scholar
  52. 52.
    Antunes AC, Antunes SRM, Zara AJ, Pianaro SA, Longo E, Varela JA (2002) J Mater Sci 37:2407 (doi: 10.1023/A:1015458700086)CrossRefGoogle Scholar
  53. 53.
    Dhage SR, Ravi V, Date SK (2002) Mater Lett 57:727CrossRefGoogle Scholar
  54. 54.
    Sensato FR, Filho OT, Longo E, Sambrano JR, Andres J (2001) J Mol Struct 541:69CrossRefGoogle Scholar
  55. 55.
    Antunes AC, Antunes SM, Pianaro SA, Rocha MR, Longo E, Varela JA (1998) J Mater Sci Lett 17:577CrossRefGoogle Scholar
  56. 56.
    Bacelar WK, Oliveira MM, Souza VC, Longo E, Leite ER, Varela JA (2002) J Mater Sci: Mater Electron 13:409Google Scholar
  57. 57.
    Santhosh PN, Potdar HS, Date SK (1997) J Mater Res 12:326CrossRefGoogle Scholar
  58. 58.
    Zang G, Wang J-F, Chen H-C, Su W, Wang W, Wang C, Qi P (2004) J Alloy Comp 377:82CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Renaud Metz
    • 1
    Email author
  • Jonathan Morel
    • 1
  • Mourad Houabes
    • 1
  • Julien Pansiot
    • 2
  • Merdad Hassanzadeh
    • 2
  1. 1.Laboratoire Hydrazines et Procédés Lyon1-CNRS-Isochem (Groupe SNPE)UMR 5179 Bâtiment BertholletVilleurbanneFrance
  2. 2.Areva T&DMontpellier Cedex 2France

Personalised recommendations