Journal of Materials Science

, Volume 42, Issue 2, pp 483–489 | Cite as

Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral

  • M. J. Starink


Model-free isoconversion methods which use approximations of the temperature integral are generally reliable methods for the calculation of activation energies of thermally activated reactions studied during linear heating. These methods generally neglect the temperature integral at the start of the linear heating, I(T o ). An analytical equation is derived which describes the deviations introduced by this assumption. It is shown that for most reactions encountered this assumption does not have a significant influence on the accuracy of the method. However in cases where T o is within about 50 to 70 K of the reaction stage to be investigated and activation energies are relatively low, significant deviations are introduced. It is shown that some of the published thermal analysis work on activation energy analysis of reactions occurring at relatively low temperatures is affected by these deviations. Examples are specific cases of dehydration reactions, cure reactions and cluster formation in Al alloys.


Differential Scanning Calorimetry Temperature Integral Isoconversion Method Dehydration Reaction Cure Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Dr Nong Gao is gratefully acknowledged for performing DSC experiments presented in Figure 4.


  1. 1.
    Starink MJ (2004) Int Mater Rev 49:191CrossRefGoogle Scholar
  2. 2.
    Galwey AK, Brown ME (1998) In: Brown ME (ed) Handbook of Thermal Analysis and Calorimetry, vol. 1, Elsevier, Amsterdam, p 147Google Scholar
  3. 3.
    Liu F, Sommer F, Mittemeijer EJ (2004) J Mater Sci 39:1621CrossRefGoogle Scholar
  4. 4.
    Starink MJ, Zahra A-M (1998) Phil Mag A 77:187Google Scholar
  5. 5.
    Vyazovkin S (2000) Thermochim Acta 355:155CrossRefGoogle Scholar
  6. 6.
    Starink MJ, Zahra A-M (1997) Thermochim Acta 298:298CrossRefGoogle Scholar
  7. 7.
    Flynn JH (1997) Thermochim Acta 300:83CrossRefGoogle Scholar
  8. 8.
    Sewry JD, Brown ME (2002) Thermochim Acta 390:217CrossRefGoogle Scholar
  9. 9.
    Wanjun Tang, Donghua Chen (2005) Thermochim Acta 433:72CrossRefGoogle Scholar
  10. 10.
    Starink MJ (2003) Thermochim Acta 404:163CrossRefGoogle Scholar
  11. 11.
    Kissinger HE (1957) Analyt Chem 29:1702CrossRefGoogle Scholar
  12. 12.
    Ozawa T (1970) J Therm Anal 2:301CrossRefGoogle Scholar
  13. 13.
    Mittemeijer EJ (1992) J Mater Sci 27:3977CrossRefGoogle Scholar
  14. 14.
    Flynn JH, Wall LA J (1966) Polym Sci Part B 4:323CrossRefGoogle Scholar
  15. 15.
    Ozawa T (1992) Thermochim Acta 203:159CrossRefGoogle Scholar
  16. 16.
    Vyazovkin S, Goriyachko VV (1992) Thermochim Acta 194:221CrossRefGoogle Scholar
  17. 17.
    Vyazovkin S, Lesnikovich AI (1988) Russ J Phys Chem 62:2949Google Scholar
  18. 18.
    Starink MJ (1996) Thermochim Acta 288:97CrossRefGoogle Scholar
  19. 19.
    Starink MJ (1997) J Mater Sci 32:6505CrossRefGoogle Scholar
  20. 20.
    Starink MJ, Sinclair I, Gao N, Kamp N, Gregson PJ, Pitcher P, Levers A, Gardiner S (2002) Mater Sci Forum 396–402:601Google Scholar
  21. 21.
    Starink MJ, Gao N, Yan JL (2004) Mater Sci Eng 387–389:222Google Scholar
  22. 22.
    Charai A, Walther T, Alfonso C, Zahra A-M, Zahra CY (2000) Acta Mater 48:2751CrossRefGoogle Scholar
  23. 23.
    Starink MJ, A-M Zahra (1997) J Mater Sci Lett 16:1613CrossRefGoogle Scholar
  24. 24.
    Abis S, Massazza M, Mengucci P, Riontino G (2001) Scr Mater 45:685CrossRefGoogle Scholar
  25. 25.
    Starink MJ, Gao N, Davin L, Yan J, Cerezo A (2005) Phil Mag 85:1395Google Scholar
  26. 26.
    Su Ting-Ting, Jiang Heng, Gong Hong (2005) Thermochim Acta 435:1CrossRefGoogle Scholar
  27. 27.
    Vecchio S, Di R Rocco, Ferragina C, Materazzi S (2005) Thermochim Acta 35:181CrossRefGoogle Scholar
  28. 28.
    Mondragon I, Solar L, Recalde IB, Gómez CM (2004) Thermochim Acta 417:19CrossRefGoogle Scholar
  29. 29.
    Zhou Tianle, Gu Mingyuan, Jin Yanping, Wang Junxiang (2005) Polymer 46:6216CrossRefGoogle Scholar
  30. 30.
    Guangbo He, Ning Yan (2005) Int J Adhesion Adhesives 25:450Google Scholar
  31. 31.
    Starink MJ, Zahra A-M (1998) Acta Mater 46:3381CrossRefGoogle Scholar
  32. 32.
    Starink MJ, A.-M. Zahra (1997) Phil Mag A 76:701Google Scholar
  33. 33.
    Slabanja M, Wahnström G (2005) Acta Mater 53:3721CrossRefGoogle Scholar
  34. 34.
    Starink MJ, Zahra A-M (1999) J. Mater Sci 34:1117CrossRefGoogle Scholar
  35. 35.
    Gao N, Davin L, Wang S, Cerezo A, Starink MJ (2002) Mater Sci Forum 396–402:923CrossRefGoogle Scholar
  36. 36.
    Hono K (2002) Prog Mater Sci 47:621CrossRefGoogle Scholar
  37. 37.
    Wang SC, Starink MJ (2004) Mater Sci Eng A 386:156CrossRefGoogle Scholar
  38. 38.
    Starink MJ, Dion A (2004) Thermochim Acta 417:5CrossRefGoogle Scholar
  39. 39.
    Wang SC, Starink MJ (2005) Int Mater Rev 50:193CrossRefGoogle Scholar
  40. 40.
    Wang SC, Starink MJ, Gao N (2006) Scr. Mater. 54: 287CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Materials Research Group, School of Engineering SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations