Journal of Materials Science

, Volume 42, Issue 1, pp 259–265 | Cite as

Carbon-nanofiber composite electrodes for thin and flexible lithium-ion batteries

  • Mao-Sung Wu
  • Jyh-Tsung Lee
  • Pin-Chi Julia Chiang
  • Jung-Cheng Lin


Addition of vapor-grown carbon nanofiber (VGCF) into a LiCoO2 composite electrode increases electrode’s conductivity and adhesion strength significantly. These increases are attributed to the uniform distribution of network-like VGCF of high conductivity; VGCF not only connects the surface of the active materials, its network penetrates into and connects each active material particle. VGCF composite electrode also improves the electrochemical performance of thin and flexible lithium-ion batteries such as discharge capacity at high current densities, cycle-life stability, and low-temperature (at −20 °C) discharge capacity. These improved electrochemical properties are attributed to the well-distributed network-like carbon nanofibers, VGCF, within the cathode. The addition of VGCF reduces the electron conducting resistance and decreases the diffusion path for lithium ions, hence increases the utilization of active materials during high-current discharge and low-temperature discharge. In addition, network-like VGCF forms a more uniform cathode structure so as to have a lower deterioration rate and correspondingly better life cycle stability.


Discharge Capacity Adhesion Strength Composite Electrode Polymer Binder Solid Electrolyte Interphase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Akashi H, Tanaka K, Sekai K (2002) J Power Sources 104:241CrossRefGoogle Scholar
  2. 2.
    Hong JK, Lee JH, Oh SM (2002) J Power Sources 111:90CrossRefGoogle Scholar
  3. 3.
    Mandal S, Amarilla JM, Ibanez J, Rojo JM (2001) J Electrochem Soc 148:A24CrossRefGoogle Scholar
  4. 4.
    Cheon SE, Kwon CW, Kim DB, Hong SJ, Kim HT, Kim SW (2000) Electrochim Acta 46:599CrossRefGoogle Scholar
  5. 5.
    Fransson L, Eriksson T, Edstrom K, Gustafsson T, Thomas JO (2001) J Power Sources 101:1CrossRefGoogle Scholar
  6. 6.
    Takamura T, Saito M, Shimokawa A, Nakahara C, Sekine K, Maeno S, Kibayashi N (2000) J Power Sources 90:45CrossRefGoogle Scholar
  7. 7.
    Dominko R, Gaberscek M, Drofenik J, Bele M, Pejovnik S (2001) Electrochem Solid-State Lett 4:A187CrossRefGoogle Scholar
  8. 8.
    Wu MS, Liao TL, Wang YY, Wan CC (2004) J Appl Electrochem 34:797CrossRefGoogle Scholar
  9. 9.
    Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K, Dresselhaus MS (2001) Carbon 39:1287CrossRefGoogle Scholar
  10. 10.
    Speck JS, Endo M, Dresselhaus MS (1989) J Cryst Growth 94:834CrossRefGoogle Scholar
  11. 11.
    Tibbetts GG (1983) Appl Phys Lett 42:666CrossRefGoogle Scholar
  12. 12.
    Frysz CA, Shui X, Chung DL (1995) J Power Sources 58:55CrossRefGoogle Scholar
  13. 13.
    Wu MS, Chiang PC, Lin JC, Jan YS, (2004) Electrochim Acta 49:1803CrossRefGoogle Scholar
  14. 14.
    Wu MS, Chiang PC, Lin JC (2005) J Electrochem Soc 152:A47CrossRefGoogle Scholar
  15. 15.
    Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2005) J Electrochem Soc 152:A1499CrossRefGoogle Scholar
  16. 16.
    Wu MS, Liu KH, Wang YY, Wan CC (2002) J Power Sources 109:160CrossRefGoogle Scholar
  17. 17.
    Smart MC, Ratnakumar BV, Surampudi S (1999) J Electrochem Soc 146:486CrossRefGoogle Scholar
  18. 18.
    Smart MC, Ratnakumar BV, Surampudi S (2002) J Electrochem Soc 149:A361CrossRefGoogle Scholar
  19. 19.
    Wei G, Haas TE, Goldner RB (1992) Solid State Ionics 58:115CrossRefGoogle Scholar
  20. 20.
    Wu MS, Chiang PC, Lin JC (2005) J Electrochem Soc 152:A1041CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Mao-Sung Wu
    • 1
  • Jyh-Tsung Lee
    • 2
  • Pin-Chi Julia Chiang
    • 2
  • Jung-Cheng Lin
    • 2
  1. 1.Department of Chemical and Material EngineeringNational Kaohsiung University of Applied SciencesKaohsiungTaiwan, ROC
  2. 2.Materials Research LaboratoriesIndustrial Technology Research InstituteHsinchuTaiwan, ROC

Personalised recommendations