Journal of Materials Science

, Volume 42, Issue 1, pp 215–220 | Cite as

Compositional dependence of some physical properties of ZnO–PbO–P2O5 glasses

  • H. TicháEmail author
  • J. Schwarz
  • L. Tichý


Six glasses of the chemical composition 10ZnO–xPbO–(90−x) P2O5 were prepared. With an increase in PbO content a non-monotonous step like increase in the density, in the glass transition temperature, and in the refractive index was observed. From the Raman and IR spectra studied the evidence is given for the phosphate network depolymerization as PbO content increases. Increase in PbO content leads also to an increase in refractive index (n) up to n = 1.74, for x = 55, and to an increase in the glass transition temperature (T g) from T g = 270 °C (x = 30) to T = 360 °C (x = 55).


Raman Spectrum Raman Band Phosphate Glass Terminal Oxygen Atom Tetragonal Pyramid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the project MSM 0021627501 of the Czech Ministry of Education and by GACR project 340711/51. L.T. acknowledges also support from the project AVOZ 40500505. We also acknowledge to M.Vlčeka and M.Kinclb for kind measurements of the Raman and infrared spectra, respectively.


  1. 1.
    Liu HS, Chin TS (1997) Phys Chem Glasses 38(3):123Google Scholar
  2. 2.
    Liu HS, Chin TS, Yung SW (1997) Mater Chem Phys 50:1CrossRefGoogle Scholar
  3. 3.
    Liu HS, Shih PY, Chin TS (1996) Phys Chem Glasses 37:227Google Scholar
  4. 4.
    Subbalakshmi P, Veeraiah N (2002) Mater Lett 56:880CrossRefGoogle Scholar
  5. 5.
    Saout GL, Fayon F, Bessada C, Simon P, Blion A, Vaills Y (2001) J Non-Cryst Solids 293/295:657CrossRefGoogle Scholar
  6. 6.
    Brow RK (1997) J Non Cryst Solids 222:396Google Scholar
  7. 7.
    Day DE, Wu Z, Ray CS, Hrma P (1998) J Non-Cryst Solids 241:1CrossRefGoogle Scholar
  8. 8.
    Weber MJ (1990) J Non Cryst Solids 123:208CrossRefGoogle Scholar
  9. 9.
    Brow RK, Kovacic L, Loehman RE (1996) Ceram Trans 70:177Google Scholar
  10. 10.
    Schwarz J, Tichá H (2003) Sci Pap Univ Pardubice A 9:79Google Scholar
  11. 11.
    Young SW, Shioh PY, Chin TS (1998) Mater Chem Phys 57:111CrossRefGoogle Scholar
  12. 12.
    Meyer K (1997) J Non Cryst Solids 209:227CrossRefGoogle Scholar
  13. 13.
    Martin SW (1991) Eur J Solid State Inorg Chem 28:163Google Scholar
  14. 14.
    Subbalakshmi P, Veeraiah N (2002) J Non-Cryst Solids 298:381CrossRefGoogle Scholar
  15. 15.
    Qi YF, He L (1986) J Non-Cryst Solids 80:527CrossRefGoogle Scholar
  16. 16.
    Schwarz J, Tichá H (2002) J Opt Adv Mater 4:381Google Scholar
  17. 17.
    Abe Y, Hosono H, Ohta Y, Hench LL (1988) Phys. Rev B 38:10166CrossRefGoogle Scholar
  18. 18.
    Van Wazer JR (1958) Phosphorus and its compounds, vol. 1. Interscience, New YorkGoogle Scholar
  19. 19.
    Brow RK (2000) J Non Cryst Solids 263&264:1; ibid (1995) 191:45Google Scholar
  20. 20.
    Montagne L, Palavit G, Delaval R (1998) J Non Cryst Solids 223:43CrossRefGoogle Scholar
  21. 21.
    Sales BC, Otaigbe JU, Belal GH, Boatner LA, Ramey JO (1998) J Non Cryst Solids 226:287CrossRefGoogle Scholar
  22. 22.
    Hoppe U, Walter G, Kranold R, Stachel D (2000) J Non Cryst Solids 263&264:29CrossRefGoogle Scholar
  23. 23.
    Wiechert DU, Grabowski SP, Simon M (2005) Thin Solids Films 484:73CrossRefGoogle Scholar
  24. 24.
    Gresch R, Mueller-Wartmuth W, Dutz H (1979) J Non Cryst Solids 34:127CrossRefGoogle Scholar
  25. 25.
    Hoppe U (1996) J Non Cryst Solids 195:138CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic
  2. 2.Joint Laboratory of Solid State Chemistry, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech RepublicUniversity of PardubicePardubiceCzech Republic

Personalised recommendations