Electrorheological properties of polypyrrole–SnO2–methylcellulose nanocomposite suspensions
Article
First Online:
- 179 Downloads
- 13 Citations
Abstract
Inorganic-conducting polymer particles were prepared to enhance physical and chemical properties by forming hybrid nanocomposites, which would improve the electrorheological (ER) effect of their suspensions. Polypyrrole (PPy)–SnO2–methylcellulose nanocomposite particles were synthesized by controlling the ratio of pyrrole, SnO2, and methylcellulose during the polymerization. The ER and dielectric properties of the PPy–SnO2–methylcellulose nanocomposite suspensions were investigated. The ER response increases with the increase in the SnO2/pyrrole ratio and also depends on the amount of methylcellulose amount during the polymerization, showing a maximum ER behavior.
Keywords
SnO2 Polyaniline Electric Field Strength Methylcellulose Particle Volume FractionReferences
- 1.Gangopadhyay R, De A (2000) Chem Mater 12:608CrossRefGoogle Scholar
- 2.Su SJ, Kuramoto M (2000) Synth Metals 114:147CrossRefGoogle Scholar
- 3.Winslow WM (1949) J Appl Phys 20:1137CrossRefGoogle Scholar
- 4.Shulman ZP, Gorodkin RG, Korobko EV (1981) J Non-Newt Fluid Mech 8:29CrossRefGoogle Scholar
- 5.Deinega YF, Vinogradov GV (1984) Rheol Acta 23:636CrossRefGoogle Scholar
- 6.Block H, Kelly JP (1988) J Phys D: Appl Phys 21:1661CrossRefGoogle Scholar
- 7.Kim YD, Park DH (2002) Colloid Polym Sci 280:828CrossRefGoogle Scholar
- 8.Kim YD, Song IC (2002) J Mater Sci 37:5051CrossRefGoogle Scholar
- 9.Zhao XP, Yin JB (2006) J Ind Eng Chem 12:184Google Scholar
- 10.Ikazaki F, Kawai A, Uchida K, Kawakami T, Edamura K, Sakurai K, Anzai H, Asako Y (1998) J Phys D: Appl Phys 31:336CrossRefGoogle Scholar
- 11.Otsubo Y, Edamura K (1994) J Coll Interface Sci 168:230CrossRefGoogle Scholar
- 12.Kim SG, Kim JW, Choi HJ, Suh MS, Shin MJ, Jhon MS (2000) Colloid Polym Sci 278:894CrossRefGoogle Scholar
- 13.Cho MS, Choi HJ, To K (1998) Macromol Rapid Commun 19:271CrossRefGoogle Scholar
- 14.Goodwin JW, Markham GM, Vincent B (1997) J Phys Chem B 101:1961CrossRefGoogle Scholar
- 15.Block H, Kelly JO, Qin A, Watson T (1990) Langmuir 6:6CrossRefGoogle Scholar
- 16.Maity A, Biswas M (2006) J Ind Eng Chem 12:311Google Scholar
- 17.Tlica J, Saha P, Quadrat O, Stejskal J (2000) J Phys D: Appl Phys 12:1173Google Scholar
- 18.Lengalova A, Pavlinek B, Saha P, Stejskal J, Quadrat O (2003) J Colloid Inter Sci 258:174CrossRefGoogle Scholar
- 19.Kim J, Kim SG, Choi HJ, Jhon MS (1999) Macromol Rapid Commun 20:450CrossRefGoogle Scholar
- 20.Kim JW, Liu F, Choi HJ, Hong SH, Joo J (2003) Polymer 44:289CrossRefGoogle Scholar
- 21.Flitton R, Johal J, Maeda S, Armes SP (1995) J Colloid Inter Sci 173:135CrossRefGoogle Scholar
- 22.Klingenberg DJ, Dierking D, Zukoski CF (1991) J Chem Soc Faraday Trans 87:425CrossRefGoogle Scholar
- 23.Marshall L, Zukoski CF, Goodwin JW (1989) J Chem Soc Faraday Trans 85:2785CrossRefGoogle Scholar
- 24.Parthasarathy M, Klingenberg DJ (1996) Maters Sci Eng R17:57CrossRefGoogle Scholar
- 25.Wu CW, Conrad H (1996) J Phys D: Appl Phys 29:3147CrossRefGoogle Scholar
- 26.Gast AP, Zukoski CF (1989) Adv Colloid Interface Sci 30:153CrossRefGoogle Scholar
- 27.Kim YD, Klingenberg DJ (1996) J Colloid Interface Sci 168:230Google Scholar
- 28.Kim YD (2001) J Colloid Interface Sci 236:225CrossRefGoogle Scholar
- 29.De Gangopadhyay RA (1999) Eur Polym J 35:1985CrossRefGoogle Scholar
- 30.Foulc JN, Atten P, Felici N (1994) J Electrostat 33:103CrossRefGoogle Scholar
- 31.Cho MS, Cho YH, Choi HJ, Jhon MS (2003) Langmuir 19:5875CrossRefGoogle Scholar
- 32.Hong CH, Park BJ, Choi HJ (2006) J Colloid Interface Sci 300:818CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC 2007