Advertisement

Journal of Materials Science

, Volume 42, Issue 14, pp 5516–5523 | Cite as

Strength and fracture toughness of nano and micron-silica particles bidispersed epoxy composites: evaluated by fragility parameter

  • Soon-Chul Kwon
  • Tadaharu Adachi
Article

Abstract

In this study, we discuss the composition effect of 240 nm and 1.56 μm-silica particles on strength and fracture toughness by examining two parameters, fragility and glass transition temperature, that were derived from the thermo-viscoelasticity measurements. Experimental results showed that the composites had a lower fragility with higher strength and fracture toughness as the content of nanoparticles was increased regardless of glass transition temperature. The improvement in mechanical properties from adding nanoparticles was definitely explained by the fragility represented the heterogeneity in polymer matrix, and this was related to the interaction between particles and matrix. The fragility was found to be an effective parameter for evaluating strength and fracture toughness of epoxy composite containing a bidispersion of nano and micron-silica particles.

Keywords

Fracture Toughness Glass Transition Temperature Master Curve Epoxy Matrix Epoxy Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kinloch AJ, Taylor AC (2003) J Mater Sci Lett 22:1439CrossRefGoogle Scholar
  2. 2.
    Kinloch AJ, Lee JH, Taylor AC, Sprenger S, Eger C, Egan D (2003) J Adhesion 79:867CrossRefGoogle Scholar
  3. 3.
    Huang KS, Nien YH, Chen JS, Shieh TR, Chen JW (2006) Polym Compos 27:195CrossRefGoogle Scholar
  4. 4.
    Rong MZ, Zhang MQ, Pan SL, Lehmann B, Friedrich K (2004) Polym Int 53:176CrossRefGoogle Scholar
  5. 5.
    Brechet Y, Cavaille J-YY, Chabert E, Chazeau L, Dendievel R, Flandin L, Gauthier C (2001) Adv Eng Mater 3:571CrossRefGoogle Scholar
  6. 6.
    Kovacevic V, Lucic S, Leskovac M (2002) J Adhesion Sci 16:1343CrossRefGoogle Scholar
  7. 7.
    Park JH, Jana SC (2003) Polymer 44:2091Google Scholar
  8. 8.
    Nikkeshi S, Kudo M, Masuko T (1998) J Appl Polym Sci 69:2593CrossRefGoogle Scholar
  9. 9.
    Miyagawa H, Rich MJ, Drzal LT (2005) Polym Compos 26:42CrossRefGoogle Scholar
  10. 10.
    Wu WL, Hu JT, Hunston DL (1990) Polym Eng Sci 30:835CrossRefGoogle Scholar
  11. 11.
    Araki W, Adachi T, Yamaji A (2006) Recent Res Dev Appl Polym Sci 3:205Google Scholar
  12. 12.
    Angell CA (1988) J Phys Chem Solid 49:863CrossRefGoogle Scholar
  13. 13.
    Matsuoka S, Quan X, Bair HE, Boyle DJ (1989) Macromolecules 22:4093CrossRefGoogle Scholar
  14. 14.
    Racich JL, Koutsky JA (1976) J Appl Polym Sci 20:2111CrossRefGoogle Scholar
  15. 15.
    Si P, Bian X, Zhang J, Li H, Sun M, Zhao Y (2003) J Phys Condens Matter 15:5409CrossRefGoogle Scholar
  16. 16.
    Böhmer R, Ngai KL, Angell CA, Plazek DJ (1993) J Chem Phys 99:4201CrossRefGoogle Scholar
  17. 17.
    Kanaya T, Kawaguchi T, Kaji K (1996) J Chem Phys 104:3841CrossRefGoogle Scholar
  18. 18.
    Kanaya T, Tsukushi I, Kaji K (1997) Prog Theoret Phys Suppl 126:133CrossRefGoogle Scholar
  19. 19.
    Adachi T, Araki W, Nakahara T, Yamaji A, Gamou M (2002) J Appl Polym Sci 86:2261CrossRefGoogle Scholar
  20. 20.
    Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites. Marcel Dekker, New York, p 131Google Scholar
  21. 21.
    Kwon S-C, Adachi T, Araki W, Yamaji A (2006) Acta Mater 54:3369CrossRefGoogle Scholar
  22. 22.
    Araki W, Adachi T, Yamaji A, Gamou M (2002) J Appl Polym Sci 86:2266CrossRefGoogle Scholar
  23. 23.
    Araki W, Adachi T, Yamaji A (2003) JSME Int J 46:163CrossRefGoogle Scholar
  24. 24.
    Plazek DJ, Choy IC (1989) J Polym Sci Pt 27:307CrossRefGoogle Scholar
  25. 25.
    Plazek DJ, Choy IC, Kelley FN, Meerwall E, Suş LJ (1982) Rubber Chem Tech 56:866Google Scholar
  26. 26.
    Schwarzl F, Staverman AJ (1952) J Appl Phys 23:838CrossRefGoogle Scholar
  27. 27.
    Benthem JP, Koiter WT (1975) In: Mechanical fracture, vol. 1 Methods of analysis and solutions of crack problems. Noordhoff International Publishing, LeydenGoogle Scholar
  28. 28.
    Kwon S-C, Adachi T, Araki W, Yamaji A (2005) Key Eng Mat 297–300:207CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Mechanical Sciences and EngineeringTokyo Institute of TechnologyTokyoJapan

Personalised recommendations