Advertisement

Journal of Materials Science

, Volume 42, Issue 14, pp 5497–5507 | Cite as

On the solid-state ageing behaviour of the polysaccharide, guar gum

  • L. L. Barré
  • A. S. VaughanEmail author
  • S. J. Sutton
Article

Abstract

Dilute solution viscometry was used to explore the effect of solid-state ageing on the interactions that occur between guar gum and water. The resulting data set, derived from nearly 700 independent experiments, led to a value for the Flory–Huggins interaction parameter, χ, of 0.56 ± 0.12. This value, which appeared independent of ageing, is in good agreement with the majority of published data. The effect of ageing on molar mass was also explored, using Mark–Houwink–Sakurada (MHS) theory. Absolute molar mass values were found to depend sensitively on the choice of MHS constants, but the effect of ageing was unequivocal; under all conditions, it resulted in a pronounced decrease in molar mass. In concert, these results strongly suggest that, in guar, solid-state ageing reactions are largely associated with scission of the molecular backbone. This hypothesis was then tested by infra-red and Raman spectroscopy. Although infra-red spectroscopy did reveal some subtle differences between the spectra of guar and locust bean gum (LBG), a related polysaccharides with a different galactose:mannose ratio, no equivalent effects were seen in aged guar. However, clear differences between the Raman spectra of guar and LBG were seen, demonstrating that the technique is well capable of revealing changes in galactose:mannose ratios. Examination of aged guar samples revealed no comparable effects, reinforcing the notion that, in this polysaccharide, chain scission reactions dominate such that solid-state ageing does not lead to changes in the nature of its interaction with water.

Keywords

Molar Mass Intrinsic Viscosity Chain Scission Power Cable Molecular Backbone 

Notes

Acknowledgements

The authors wish to acknowledge the support of National Grid and their permission to publish this work.

References

  1. 1.
    Kök MS, Hill SE, Mitchell JR (1999) Food Hydrocolloids 13:535CrossRefGoogle Scholar
  2. 2.
    Daas PJH, Schols HA, De Jongh HHJ (2000) Carbohyd Res 329:609CrossRefGoogle Scholar
  3. 3.
    Daas PJH, Grolle K, Van Vliet T, Schols HA, De Jongh HHJ (2002) J Agric Food Chem 50:4282CrossRefGoogle Scholar
  4. 4.
    Bayerlein F (1993) In: Meuser F, Manners DJ, Seibel W (eds) Plant polymeric carbohydrates. Royal Society of Chemistry, Cambridge, p 191Google Scholar
  5. 5.
    Garti N, Leser ME (2001) Polym Adv Technol 12:123CrossRefGoogle Scholar
  6. 6.
    Cheng Y, Prud’homme RK (2000) Biomacromolecules 1:782CrossRefGoogle Scholar
  7. 7.
    Wientjes RHW, Duits MHG, Jongschaap RJJ, Mellema J (2000) Macromolecules 33:9594CrossRefGoogle Scholar
  8. 8.
    Simonet F, Garnier C, Doublier J-L (2002) Carbohyd Polym 47:313CrossRefGoogle Scholar
  9. 9.
    Lai VM-F, Lii C-Y, Hung W-L, Lu T-J (2000) Food Chem 68:319CrossRefGoogle Scholar
  10. 10.
    Robinson G, Ross-Murphy SB, Morris ER (1982) Carbohyd Research 107:17CrossRefGoogle Scholar
  11. 11.
    Fernandes PB (1995) J Food Eng 24:269CrossRefGoogle Scholar
  12. 12.
    Ferguson MJ, Jones GP (2000) J Sci Food Agric 80:166CrossRefGoogle Scholar
  13. 13.
    Vandamme TF, Lenourry A, Charrueau C, Chaumeil J-C (2002) Carbohyd Polym 48:219CrossRefGoogle Scholar
  14. 14.
    Shaw MT, Shaw SH (1984) IEEE Trans Electr Insul 19:419CrossRefGoogle Scholar
  15. 15.
    Johnson GE, Bair HE, Matsuoka S, Anderson EW, Scott JE (1980) In: Rowland SP (eds) Water in Polymers. ACS, Washington DC, p 451Google Scholar
  16. 16.
    Moreau E, Mayoux C, Laurent C, Boudet A (1993) IEEE Trans Electr Insul 28:54CrossRefGoogle Scholar
  17. 17.
    Cheng Y, Brown KM, Prud’homme RK (2002) Biomacromolecules 3:456CrossRefGoogle Scholar
  18. 18.
    Cheng Y, Brown KM, Prud’homme RK (2002) Int J Biol Macromol 31:29CrossRefGoogle Scholar
  19. 19.
    Chen J, Park H, Park K (1999) J Biomed Mater Res 44:53CrossRefGoogle Scholar
  20. 20.
    Wang Q, Ellis PR, Ross-Murphy SB (2003) Carbohyd Polym 53:75CrossRefGoogle Scholar
  21. 21.
    Casas JA, Mohedano AF, Garcia-Ochoa F (2000) J Sci Food Agric 80:1722CrossRefGoogle Scholar
  22. 22.
    Beer MU, Wood PJ, Weisz J (1999) Carbohyd Polym 39:377CrossRefGoogle Scholar
  23. 23.
    Ndjouenkeu R, Goycoolea FM, Morris ER, Akingbala JO (1996) Carbohyd Polym 29:263CrossRefGoogle Scholar
  24. 24.
    Xu X, Lei W, Zhang L (2006) Food Hydrocolloids 20:723CrossRefGoogle Scholar
  25. 25.
    Cho J, Heuzey MC, Bégin A, Carreau PJ (2006) J Food Eng 74:500CrossRefGoogle Scholar
  26. 26.
    Redgwell RJ, Schmitt C, Beaulieu M, Curti D (2005) Food Hydrocolloids 19:1005CrossRefGoogle Scholar
  27. 27.
    Richardson PH, Willmer J, Foster TJ (1998) Food Hydrocolloids 12:339CrossRefGoogle Scholar
  28. 28.
    Barré LL (2004) PhD Thesis. University of Southampton: Southampton, 2004Google Scholar
  29. 29.
    Olley RH, Hodge AM, Bassett DC (1979) J Polym Sci: Polym Phys Ed 17:627Google Scholar
  30. 30.
    Huggins ML (1938) J Phys Chem 42:911CrossRefGoogle Scholar
  31. 31.
    Huggins ML (1939) J Phys Chem 43:439CrossRefGoogle Scholar
  32. 32.
    Huggins ML (1942) J Am Chem Soc 64:2716CrossRefGoogle Scholar
  33. 33.
    Kraemer EO (1938) Ind Eng Chem 30:1200CrossRefGoogle Scholar
  34. 34.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, New York, p 310Google Scholar
  35. 35.
    Sudduth RD (1997) J Appl Polym Sci 66:2319CrossRefGoogle Scholar
  36. 36.
    Hacche LS, Washington GE, Brant DA (1987) Macromolecules 20:2179CrossRefGoogle Scholar
  37. 37.
    Casassa EF, Berry GC (1989) In: Booth C, Price C (eds) Comprehensive polymer science, vol. 2: Polymer properties. Pergammon Press, Oxford, p 71Google Scholar
  38. 38.
    Tayal A, Khan SA (2000) Macromolecules 33:9488CrossRefGoogle Scholar
  39. 39.
    Bradley TD, Mitchell JR (1988) Carbohyd Polym 9:257CrossRefGoogle Scholar
  40. 40.
    Hamley IW (2000) Introduction to soft matter. Wiley, ChichesterGoogle Scholar
  41. 41.
    Barlow RJ (1989) Statistics. Wiley, ChichesterGoogle Scholar
  42. 42.
    Goycoolea FM, Morris ER, Gidley MJ (1995) Carbohyd Polym 27:69CrossRefGoogle Scholar
  43. 43.
    Azero EG, Andrade CT (2002) Polym Test 21:551CrossRefGoogle Scholar
  44. 44.
    Gaisford SE, Harding SE, Mitchell JR, Bradley TD (1986) Carbohyd Polym 6:423CrossRefGoogle Scholar
  45. 45.
    Pai VB, Khan SA (2002) Carbohyd Polym 49:207CrossRefGoogle Scholar
  46. 46.
    Picout DR, Ross-Murphy SB, Errington N, Harding SE (2001) Biomacromolecules 2:1301CrossRefGoogle Scholar
  47. 47.
    Zhbankov RG, Firsov SP, Buslov DK, Nikonenko NA, Marchewka MK, Ratajczak H (2002) J Molec Struct 614:117CrossRefGoogle Scholar
  48. 48.
    Proniewicz LM, Paluszkiewicz C, Weselucha-Birczynska A, Baranski A, Dutka D (2002) J Molec Struct 614:345CrossRefGoogle Scholar
  49. 49.
    Proniewicz LM, Paluszkiewicz C, Weselucha-Birczinska A, Majcherczjyk H, Baranski A, Konieczna A (2001) J Mol Struct 596:163CrossRefGoogle Scholar
  50. 50.
    Kizil R, Irudayaraj J, Seetharaman K (2002) J Agric Food Chem 50:3912CrossRefGoogle Scholar
  51. 51.
    Zhbankov RG, Firsov SP, Grinshpan DD, Baran J, Marchewka MK, Ratajczak H (2003) J Mol Struct 645:9CrossRefGoogle Scholar
  52. 52.
    Mrozek MF, Weaver MJ (2002) Anal Chem 74:4069CrossRefGoogle Scholar
  53. 53.
    Bell AF, Barron LD, Hecht L (1994) Carbohydr Res 257:11CrossRefGoogle Scholar
  54. 54.
    Zhbankov RG, Firsov SP, Korolik EV, Petrov PT, Lapkovski MP, Tsarenkov VM, Marchewka MK, Ratajczak H (2000) J Mol Struct 555:85CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Electronics and Computer ScienceUniversity of SouthamptonHighfield, SouthamptonUK
  2. 2.National Grid, NGT House, Warwick Technology ParkWarwick, CoventryUK

Personalised recommendations