Journal of Materials Science

, Volume 42, Issue 14, pp 5490–5496 | Cite as

Effect of simultaneous substitution of La and Mn on dielectric behavior of barium titanate ceramic

  • Om ParkashEmail author
  • Devendra Kumar
  • R. K. Dwivedi
  • K. K. Srivastava
  • Prakash Singh
  • Sindhu Singh


A few compositions in the valence compensated system Ba1−xLaxTi1−xMnxO3 were synthesized by solid-state ceramic method to study the effect of co-doping lanthanum and manganese in equimolar amounts on dielectric behavior of BaTiO3. Compositions with x ≤ 0.10 have shown solid solution formation. Compositions with x ≤ 0.05 are found to have tetragonal structure at room temperature while composition with x = 0.10 is cubic. Plots of relative dielectric constant, εr versus temperature for composition with x = 0.01 show dielectric anomalies around 376 ± 2, 264 ± 2 and 179 ± 2 K which correspond to cubic to tetragonal (TC–T), tetragonal to orthorhombic (TT–O) and orthorhombic to rhombohedral (TO–R) transition, respectively, similar to BaTiO3. Curie temperature has been found to decrease with increasing concentration of lanthanum and manganese simultaneously in barium titanate. The broadening in the dielectric peak at cubic to tetragonal (TC–T) transition temperature increases with increasing x. For x = 0.10, only one anomaly at 100 K is observed in its εr versus T plots. The observation of this single anomaly may be due to pinching effect of the substitutions on the three phase transitions.


Oxygen Vacancy Lanthanum BaTiO3 Curie Temperature Barium Titanate 



Financial assistance from Department of Science and Technology, Government of India is gratefully acknowledged. We are grateful to Prof. D. Pandey for providing us X-ray diffraction facilities for these samples. We are thankful to Prof. T. K. Gundu Rao of I.I.T. Bombay for doing ESR spectra. Prakash Singh and Sindhu Singh are also grateful to C.S.I.R., New Delhi for providing financial assistance.


  1. 1.
    Jaffe B, Cook WR Jr, Jaffe H (1971) Piezoelectric ceramics. Academic Press, New York, p 91Google Scholar
  2. 2.
    Newnham RE (1983) J Mater Educ 5:941Google Scholar
  3. 3.
    Goodman G (1986) In: Buchanan RC (ed) Ceramic capacitor material. Marcel Dekker, Inc., New York, p 79Google Scholar
  4. 4.
    Daniels J, Hardtl KH (1976) Phillips Tech Rep 31:447Google Scholar
  5. 5.
    Shaikh AS, Vest RW (1986) J Am Ceram Soc 69(9):689CrossRefGoogle Scholar
  6. 6.
    Jonker GH, Havinga EE (1982) Mater Res Bull 17:345CrossRefGoogle Scholar
  7. 7.
    Bahadur D, Om Parkash (1983) J Solid State Chem 46:197Google Scholar
  8. 8.
    Om Parkash, Prasad CD, Kumar D (1989) Phys State Sol (a) 116:K81Google Scholar
  9. 9.
    Om Parkash, Prasad CD, Kumar D (1990) J Mater Sci 25:487CrossRefGoogle Scholar
  10. 10.
    Om Parkash, Tare VB, Tewari HS, Kumar D (1993) J Phys D; Appl Phys 26:676Google Scholar
  11. 11.
    Om Parkash, Kumar D, Prasad CD (1994) J Phys D; Appl Phys 27:509Google Scholar
  12. 12.
    Upadhyay S, Kumar D, Om Parkash (1996) Bull Mater Sci 19:513CrossRefGoogle Scholar
  13. 13.
    Om Parkash, Durga Prasad Ch, Kumar D (1991) J Mater Sci 102:203Google Scholar
  14. 14.
    Om Parkash, Tiwari HS, Pandey L, Kumar R, Kumar D (1989) J Am Ceram Soc 72:1520Google Scholar
  15. 15.
    Saito H, Chazono H, Kishi H, Yamaoka N (1991) Jpn J Appl Phys 30:2307CrossRefGoogle Scholar
  16. 16.
    Takeuchi N, Abiru Y, Ishida S (2003) J Soc Mater Sci, Japan 52:1155CrossRefGoogle Scholar
  17. 17.
    Takeuchi N, Monguchi O, Ishida S (2005) J Soc Mater Sci, Japan 54:767CrossRefGoogle Scholar
  18. 18.
    Gilleo MA (1957) Acta Cryst 10:161CrossRefGoogle Scholar
  19. 19.
    Goodenough JB, Longo JM (1970) Landolt-Bornstein Tabellen, vol 111/4a. Springer-Verlag, BerlinGoogle Scholar
  20. 20.
    Desu SB, Payne AD (1990) J Am Ceram Soc 73(11):3398CrossRefGoogle Scholar
  21. 21.
    Kutty TRN (1986)Proc Ind Acad Sci 96:581CrossRefGoogle Scholar
  22. 22.
    Shirane G, Hoshino S, Suzuki K (1950) Phys Rev 80:1705Google Scholar
  23. 23.
    Hippel AV (1995) Dielectrics and waves. New York, WileyGoogle Scholar
  24. 24.
    Garcia D, Eiras JA (1991) Ferroelectrics 123:51CrossRefGoogle Scholar
  25. 25.
    Mazdyasini KS, Brown LM (1971) J Am Ceram Soc 54(11):539CrossRefGoogle Scholar
  26. 26.
    Morrison FD, Sinclair DC, West AR (1999) J Appl Phys 86(11):6355CrossRefGoogle Scholar
  27. 27.
    Dwivedi RK, Om Parkash, Kumar D (2000) J Phys D; Appl Phys 33:88Google Scholar
  28. 28.
    Burn I, Neirman S (1982) J Mater Sci 17:3510CrossRefGoogle Scholar
  29. 29.
    Kroger FA, Wink HJ (1956) Solid state physics. Academic Press, New YorkGoogle Scholar
  30. 30.
    Moos R, Hardtl KH (1997) J Am Ceram Soc 80:2549CrossRefGoogle Scholar
  31. 31.
    Shanon RD, Prewitt CT (1969) Acta Cryst B25:925CrossRefGoogle Scholar
  32. 32.
    Jonker JH (1966) J Appl Phys 37:1424CrossRefGoogle Scholar
  33. 33.
    Dwivedi RK, Kumar D, Om Parkash, Srivastava KK, Singh P (in press) J Mater SciGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Om Parkash
    • 1
    Email author
  • Devendra Kumar
    • 1
  • R. K. Dwivedi
    • 2
  • K. K. Srivastava
    • 1
  • Prakash Singh
    • 1
  • Sindhu Singh
    • 1
  1. 1.Department of Ceramic Engineering, Institute of TechnologyBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of PhysicsJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations