Advertisement

Journal of Materials Science

, Volume 42, Issue 15, pp 6011–6017 | Cite as

Theoretical predictions on the effective piezoelectric coefficients of 0–3 PZT/Polymer composites

  • Ying Ming PoonEmail author
  • Chi Hin Ho
  • Yuen Wah Wong
  • Franklin G. Shin
Article

Abstract

Two explicit formulae for the effective piezoelectric coefficients (d31 and d33) of 0–3 composite have been derived by taking into account the interaction effects between the inclusions and are expressed directly in terms of the properties of the constituents. Predictions using these two formulae are compared with published experimental data of 0–3 composite systems having three different polarization states: only the inclusion phase is polarized; both phases are polarized in the same direction and the two phases are polarized in opposite directions. In addition, the predictions using Wong et al.’s scheme (Wong CK, Poon YM, Shin FG (2001) J Appl Phys 90:4690) and Furukawa et al.’s model (Furukawa T, Fujino K, Fukada E (1976) Jpn J Appl Phys 15:2119) are included for comparison. For the first two cases, the results show that both our model and Wong et al.’s scheme have comparable performance. However, for the last case, our model gives more favorable predictions than theirs.

Keywords

Bulk Modulus Hydrophone High Volume Fraction Electric Displacement Piezoelectric Coefficient 

Notes

Acknowledgements

This work was supported by an internal research studentship (for C. H. Ho) and the Centre for Smart Materials of The Hong Kong Polytechnic University.

References

  1. 1.
    Ting RY, Geil FG (1991) 1990 IEEE 7th International Symposium on Applications of Ferroelectrics (Cat. No. 90CH2800–1), p 14Google Scholar
  2. 2.
    Zhou QF, Chan HLW, Choy CL (2000) Thin Solid Film 375:95CrossRefGoogle Scholar
  3. 3.
    Newnham RE, Skinner DP, Cross LE (1978) Mater Res Bull 13:525CrossRefGoogle Scholar
  4. 4.
    Furukawa T, Fujino K, Fukada E (1976) Jpn J Appl Phys 15:2119CrossRefGoogle Scholar
  5. 5.
    Furukawa T, Fujino K, Fukada E (1979) J Appl Phys 50:4904CrossRefGoogle Scholar
  6. 6.
    Yamada T, Ueda T, Kitayama T (1982) J Appl Phys 53:4328CrossRefGoogle Scholar
  7. 7.
    Jayasundere N, Smith BV, Dunn JR (1994) J Appl Phys 76:2993CrossRefGoogle Scholar
  8. 8.
    Prasad G, Bhimasankaram T, Suryanarayana SV, Kumar GS (1996) Modern Phys Lett B 10:517CrossRefGoogle Scholar
  9. 9.
    Wong CK, Poon YM, Shin FG (2001) J Appl Phys 90:4690CrossRefGoogle Scholar
  10. 10.
    Hashin Z (1962) J Appl Mech 29:143CrossRefGoogle Scholar
  11. 11.
    Bruggeman DAG (1935) Ann Phys Lpz 24:635Google Scholar
  12. 12.
    Glushanin SV, Topolov VYu (2005) J Phys D: Appl Phys 38:2460CrossRefGoogle Scholar
  13. 13.
    Glushanin SV, Topolov VYu, Krivoruchko AV (2006) Mater Chem Phys 97:357CrossRefGoogle Scholar
  14. 14.
    Poon YM, Shin FG (2004) J Mater Sci 39:1277CrossRefGoogle Scholar
  15. 15.
    Goodier JN (1933) Trans ASME 55:39Google Scholar
  16. 16.
    Ho CH, Poon YM, Wong YW, Shin FG (2006) Ferroelectric 331:1CrossRefGoogle Scholar
  17. 17.
    Furukawa T (1989) IEEE Trans Electr Insul 24:375CrossRefGoogle Scholar
  18. 18.
    Chan HLW, Chen Y, Choy CL (1995) Integr Ferroelectr 9:207CrossRefGoogle Scholar
  19. 19.
    Zeng R, Kwok KW, Chan HLW, Choy CL (2002) J Appl Phys 92:2674CrossRefGoogle Scholar
  20. 20.
    Venkatragavaraj E, Satish B, Vinod PR, Vijaya MS (2001) J Phys D: Appl Phys 34:487CrossRefGoogle Scholar
  21. 21.
    Wong CK, Shin FG (2005) J Appl Phys 97:034111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ying Ming Poon
    • 1
    Email author
  • Chi Hin Ho
    • 1
  • Yuen Wah Wong
    • 2
  • Franklin G. Shin
    • 2
  1. 1.Department of Applied Physics and Material Research CentreThe Hong Kong Polytechnic UniversityHong KongP.R. China
  2. 2.Centre for Smart MaterialsThe Hong Kong Polytechnic UniversityHong KongP.R. China

Personalised recommendations