Advertisement

Journal of Materials Science

, Volume 42, Issue 14, pp 5470–5475 | Cite as

Electrical conduction and relaxation mechanism in Li2AlZr[PO4]3

  • T. Savitha
  • S. SelvasekarapandianEmail author
  • C. S. Ramya
  • M. S. Bhuvaneswari
  • P. C. Angelo
Article

Abstract

Li-ion electrolyte NASICON type Li2AlZr[PO4]3 has been prepared by Solid State Reaction method. Formation of the sample has been confirmed by XRD and TGA–DTA analysis. Electrical conductivity studies have been performed in the frequency range 42 Hz–5 MHz within the temperature range 523–623 K using aluminium as blocking electrodes. The conductivity has been found to be 1 × 10−5 S cm−1 at 623 K. Dielectric spectra show the decrease in dielectric constant with increase in frequency. Dielectric loss spectra reveal that dc conduction contribution predominates in the sample. Spectroscopic plots of complex modulus suggest the Non-Debye behaviour of the electrical relaxation within the temperature range studied.

Keywords

Solid State Reaction Method Zirconium Phosphate Titanium Phosphate Dielectric Constant Decrease Lithium Zirconium 

References

  1. 1.
    Kang H-B, Cho N-H (1999) J Mater Sci 34:5005; DOI: 10.1023/A: 1004784327302CrossRefGoogle Scholar
  2. 2.
    Wong S, Newman PJ, Best AS (1998) J Mater Chem 8(10):2199CrossRefGoogle Scholar
  3. 3.
    Yoshikawa K, Hayakawa N, Suzuki T (1999) J Eur Cermaic Soc 19:879CrossRefGoogle Scholar
  4. 4.
    Robertson AD, West AR, Ritchie AG (1997) Solid State Ionics 104:1CrossRefGoogle Scholar
  5. 5.
    Thangadurai V, Shukla AK, Gopalakrishnan J (1999) J Mater Chem 9:739CrossRefGoogle Scholar
  6. 6.
    Vijayakumar M, Selvasekarapandian S, Bhuvaneswari MS, HiranKumar G, Ramprasad G, Subramanian R, Angelo PC (2003) Physica B 334:390CrossRefGoogle Scholar
  7. 7.
    Bauer EM, Bellitto C, Pasquali M, Prosini PP, Righinia G (2004) Electrochem Solid-State Lett 7(4):A85CrossRefGoogle Scholar
  8. 8.
    Bohnke O, Emery J, Fourquet J-L (2003) Solid State Ionics 158:119CrossRefGoogle Scholar
  9. 9.
    Bharadwaja SSN, Krupanidhi SB (2001) Thin Solid Films 391:126CrossRefGoogle Scholar
  10. 10.
    Orliukas A, Dindune A, Kanepe Z (2003) Solid State Ionics 157:177CrossRefGoogle Scholar
  11. 11.
    Ganuli M, Harish Bhat M, Rao KJ (1999) Solid State Ionics 122:23Google Scholar
  12. 12.
    Nobre MAL, Lanfredi S (2003) Catal Today 78:529CrossRefGoogle Scholar
  13. 13.
    Melnikov P, Leon C, Santamaria J, Sanchez-Quesada F (1997) J Alloys Compounds 250:520CrossRefGoogle Scholar
  14. 14.
    Sinclair DC, West AR (1988) J Mater Sci Lett 7:823CrossRefGoogle Scholar
  15. 15.
    Almond DA, West AR (1983) Solid State Ionics 11:57CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • T. Savitha
    • 1
  • S. Selvasekarapandian
    • 1
    Email author
  • C. S. Ramya
    • 1
  • M. S. Bhuvaneswari
    • 1
  • P. C. Angelo
    • 2
  1. 1.Solid State and Radiation Physics Laboratory, Department of PhysicsBharathiar UniversityCoimbatoreIndia
  2. 2.Department of Metallurgical EngineeringP.S.G. College of TechnologyCoimbatoreIndia

Personalised recommendations