Journal of Materials Science

, Volume 42, Issue 15, pp 6117–6122 | Cite as

Effects of dispersant addition on the synthesis of indium-doped calcium zirconate by co-precipitation techniques

  • Vivek KrishnanEmail author
  • Jeffrey W. Fergus


The synthesis of In2O3-doped CaZrO3 by solid oxide and oxalate co-precipitation routes has been studied. The effects of using polymeric surfactants (PEG) and ball milling on the synthesis were determined by characterizing the materials at various stages using SEM, XRD, FTIR and particle size analysis. PEG addition and ball milling led to the formation of smaller particles which reduces the time and temperature needed for perovskite formation.


Oxalate Perovskite In2O3 Precursor Powder Ammonium Oxalate 



The authors wish to acknowledge funding received from the NASA-sponsored Solidification Design Consortium directed by Dr. Tony Overfelt, Auburn University. We thank Achmad Hanafi for his contribution to the development of the precipitation process and graduate students Rui Shao and George Teoderescu for their help with particle size and FTIR measurements.


  1. 1.
    Islam MS (2000) J Mater Chem 10:1027CrossRefGoogle Scholar
  2. 2.
    Janke D (1982) Metall Trans B 13B:227CrossRefGoogle Scholar
  3. 3.
    Iwahara H, Yajima T, Hibino T (1993) Solid State Ionics 61:65CrossRefGoogle Scholar
  4. 4.
    Kurita N, Fukatsu N, Ito K, Ohashi T (1995) J Electrochem Soc 142:1552CrossRefGoogle Scholar
  5. 5.
    Kobayashi K, Yamaguchi S, Iguchi Y (1998) Solid State Ionics 108:355CrossRefGoogle Scholar
  6. 6.
    Park D, Hwang J (2005) US Pat Appl PublGoogle Scholar
  7. 7.
    Krishnan V, Fergus JW, Fasoyinu F In: ASM International, Materials Park (ed) Proceedings of the 2nd international aluminum casting technology symposium, Columbus, OH, October 2002, p 155Google Scholar
  8. 8.
    Kurita N, Fukatsu N, Miyamoto S, Sato F, Nakai H, Irie K, Ohashi T (1996) Metall Mater Trans B 27B:929CrossRefGoogle Scholar
  9. 9.
    Yu T, Chen CH, Chen XF, Zhu W, Krishnan RG (2004) Ceram Int 30:1279CrossRefGoogle Scholar
  10. 10.
    Zhu W, Yu T, Chen CH, Chen XF, Krishnan RG (2004) Integrated Ferroelectrics 61:25CrossRefGoogle Scholar
  11. 11.
    Angers R, Tremblay R, Chaklader ACD (1972) J Am Ceram Soc 55:425CrossRefGoogle Scholar
  12. 12.
    Angers R, Tremblay R, Chaklader ACD (1974) J Am Ceram Soc 57:231CrossRefGoogle Scholar
  13. 13.
    Yu T, Zhu WG, Chen CH, Chen XF, Gopal Krishnan R (2004) Physica B 348:440CrossRefGoogle Scholar
  14. 14.
    Xu J, Wilkinson A, Pattanaik S (2000) Chem Mater 12:3321CrossRefGoogle Scholar
  15. 15.
    Gonenli E, Tas C (1999) J Eur Ceram Soc 19:2563CrossRefGoogle Scholar
  16. 16.
    Saavedra MJ, Parada C, Figueiredo MO, Correa Dos Santos A (1993) Solid State Ionics 63–65:213CrossRefGoogle Scholar
  17. 17.
    Laberty-Robert C, Ansart F, Castillo S, Richard G (2002) Solid State Sci 4:1053CrossRefGoogle Scholar
  18. 18.
    Zheng W (1994) Chemical Research in Chinese Universities, vol. 10, p 333Google Scholar
  19. 19.
    Gangadevi T, Muraleedharan K, Kannan MP (1989) Thermo Acta 146:225CrossRefGoogle Scholar
  20. 20.
    Reddy VB, Mehrotra PN (1981) J Inorg Nucl Chem 43:1078CrossRefGoogle Scholar
  21. 21.
    Jean J-H, Wang H-R (1998) J Am Ceram Soc 81:1589CrossRefGoogle Scholar
  22. 22.
    Nadler MR, Fitzsimmons ES (1955) J Am Ceram Soc 38:214CrossRefGoogle Scholar
  23. 23.
    Koopmans HJA, Van De Velde GMH, Gellings PJ (1983) Acta Cryst C39:1323Google Scholar
  24. 24.
    Joint Council of Powder Diffraction Standards (JCPDS) card 35-0790 (2001)Google Scholar
  25. 25.
    Figs Zr-061 and Zr-065 (1998) Phase diagrams for zirconium and zirconia systems. In: Ondik HM, McMurdie HF (eds) American Ceramics Society, Westerville, OHGoogle Scholar
  26. 26.
    Wei Y, Guangqiang L, Zhitong S (1998) J Mater Sci Lett 17:241CrossRefGoogle Scholar
  27. 27.
    Le J, Van Rij N, Van Landschoot RC, Schoonman J (1999) J Eur Ceram Soc 19:2589CrossRefGoogle Scholar
  28. 28.
    Van Rij N, Winnubst L, Le J, Schoonman J (2000) J Mater Chem 10:2515CrossRefGoogle Scholar
  29. 29.
    Baes CF Jr, Mesmer RE (1976) The hydrolysis of cations. John Wiley and Sons p 152Google Scholar
  30. 30.
    Vasylkiv O, Sakka Y, Borodians’ka HJ (2001) J Am Ceram Soc 84:2884Google Scholar
  31. 31.
    Cavalheiro A, Zaghete MA, Varela J (1999) Cerâmica 45:56CrossRefGoogle Scholar
  32. 32.
    Liu Q, Gao L, Yan D, Mandal H, Thompson DP (1997) J Eur Ceram Soc 17:581CrossRefGoogle Scholar
  33. 33.
    Ece OI, Alemdar A, Gungor N, Hayashi S (2002) J Appl Polym Sci 86:341CrossRefGoogle Scholar
  34. 34.
    Uhland SA, Cima MJ, Sachs EM (2003) J Am Ceram Soc 86:1487CrossRefGoogle Scholar
  35. 35.
    Uekawa N, Ichikawa H, Itsuki A, Ishii S, Kakegawa K, Sasaki Y (2000) Chemical Society of Japan 3:187Google Scholar
  36. 36.
    Kaliszewski MS, Heuer AH (1990) J Am Ceram Soc 73:1504CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Materials Research and Education CenterAuburn UniversityAuburnUSA

Personalised recommendations