Advertisement

Journal of Materials Science

, Volume 42, Issue 14, pp 5562–5569 | Cite as

Preparation of Y-TZP ceramic fibers by electrolysis-sol-gel method

  • Jianjun Li
  • Xiuling JiaoEmail author
  • Dairong Chen
Article

Abstract

Polycrystalline yttria stabilized tetragonal Zirconia (T-ZrO2) fibers were obtained by pyrolysis of gel fibers using zirconium oxychloride octahydrate as raw material. The spinnable zirconia sol was prepared by electrolyzing the zirconium oxychloride octahydrate solution in the presence of acetic acid and sugar (sucrose, glucose or fructose), in which the molar ratio of CH3COOH/ZrOCl2 · 8H2O and sugar/ZrOCl2 · 8H2O was in the range of 1.0–4.0 and 0.2–0.4, respectively. The relation of spinnability to the shape of colloidal particle was discussed. The as-prepared zirconia fibers sintered at different temperatures show smooth and crack-free surface with the diameter of 5–10 μm. Slow heating rate below 600 °C and then sintering at 1,400 °C for 30 min were necessary to obtain the dense tetragonal zirconia ceramic fibers, the particles composed the fibers had the size of ∼150 nm.

Keywords

Zirconium ZrOCl2 Ceramic Fiber Thermal Gravimetric Sugar Derivative 

References

  1. 1.
    Garvie RC, Hannink RH, Pascoe RT (1975) Nature 258:703CrossRefGoogle Scholar
  2. 2.
    Yermolenko IN, Vityaz PA, Ulyanova TM (1985) Sprechsaal 118:323Google Scholar
  3. 3.
    Abe Y, Kudo T, Tomioka H, Gunji T, Nagao Y, Misono T (1998) J Mater Sci 33:1863CrossRefGoogle Scholar
  4. 4.
    Yogo T (1990) J Mater Sci 25:2394CrossRefGoogle Scholar
  5. 5.
    Marshal DB, Lange FL, Morgan PD (1987) J Am Ceram Soc 70:187CrossRefGoogle Scholar
  6. 6.
    De G, Chatter A, Ganguli D (1990) J Mater Sci Lett 9:845CrossRefGoogle Scholar
  7. 7.
    Emig G., Wirth R (1994) J Mater Sci Lett 29:4559CrossRefGoogle Scholar
  8. 8.
    Blaze JE (1967) US Patent 3322865Google Scholar
  9. 9.
    Morton MJ, Birchall JD, Cassidy JE (1974) UK Patent 1360199Google Scholar
  10. 10.
    Manfred P, Klaus A, Klaus-Dieter F, Wolfhang H, Matthias SM (1995) US Patent 5378400Google Scholar
  11. 11.
    He T, Jiao XL, Chen DR (2001) J Non-Cryst Solids 283:56CrossRefGoogle Scholar
  12. 12.
    Zhang LT (1988) The carbohydrates chemistry. Light industry Press, Beijing, in ChineseGoogle Scholar
  13. 13.
    Danielson ND, Heenan CA, Haddadian F (1999) Microchem J 63:405CrossRefGoogle Scholar
  14. 14.
    Aelion A, Loebel A, Eirich F (1950) J Am Chem Soc 72:5702CrossRefGoogle Scholar
  15. 15.
    Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds. Wiley-Interscience, New YorkGoogle Scholar
  16. 16.
    Sakka S, Yoko T (1992) J Non-Cryst Solids 147&148:394CrossRefGoogle Scholar
  17. 17.
    Huggins ML (1942) J Am Chem Soc 64:2716CrossRefGoogle Scholar
  18. 18.
    Einstein A (1906) Ann Phys 19:289CrossRefGoogle Scholar
  19. 19.
    Sakka S, Kozuka H (1988) J Non-Cryst Solids 100:142CrossRefGoogle Scholar
  20. 20.
    Vasko PD, Blackwell J, Koenig JL (1972) Carbohydrate Res 23:407CrossRefGoogle Scholar
  21. 21.
    Korolevich MV, Zhbankov RG, Sivchik VV (1990) J Mol Struc 220:301CrossRefGoogle Scholar
  22. 22.
    Geiculescu AC, Spencer HG (2000) J Sol–Gel Sci Tech 17(1):25CrossRefGoogle Scholar
  23. 23.
    Komissarova LN, Prozorovskaya ZN, Spitsyn VI (1966) Russ J Inorg Chem 11(9):2035Google Scholar
  24. 24.
    Straughan BP, Moore W, Mclaughlin R (1986) Spectrochim Acta A 42(4):451CrossRefGoogle Scholar
  25. 25.
    Zarzycki J, Prassas M, Phalippou J (1982) J Mater Sci Lett 17:3371CrossRefGoogle Scholar
  26. 26.
    Scherer GW (1989) J Non-Cryst Solids 109:171CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of ChemistryShandong UniversityJinanP.R. China

Personalised recommendations