Journal of Materials Science

, Volume 42, Issue 14, pp 5576–5580 | Cite as

Thermal and crystallization behavior of zirconia precursor used in the solution precursor plasma spray process

  • Dianying Chen
  • Eric JordanEmail author
  • Maurice Gell


Yttria stabilized zirconia (7YSZ) solution precursor has been successfully used in the deposition of high durability thermal barrier coatings. In this paper, the thermal and crystallization behaviors of 7YSZ precursor were investigated by TG-DTA, FTIR and XRD. The results show that the precursor decomposition and crystallization temperatures greatly depend on heating rate e. g. 74°C for the crystallization temperature when tripping the heating rate. With a 10 °C/min heating rate, the weight loss due to precursor pyrolysis occurs predominantly at temperatures below 500 °C. A small weight loss due to the oxidation of residual carbon is detected from 800 °C to 950 °C. The complete crystallization of the tetragonal phase was determined to be around 500 °C by DTA and XRD analyses with a 10 °C/min heating rate. The crystallization kinetics and the activation energy of amorphous 7YSZ precursor were investigated by variable heating rate DTA. The calculated activation energy is 66.2 kJ/mol. The Avrami parameter value was determined to be 2.68, which indicates that crystallization nucleation and growth is diffusion-controlled. The crystalline phase of 7YSZ coatings deposited by the Solution Precursor Plasma Spray process was identified by XRD and Raman spectrum. The average YSZ grain size in the SPPS coating was determined to be 61 nm.


Differential Thermal Analysis Thermal Barrier Coating Differential Thermal Analysis Curve 7YSZ Coating Solution Precursor Plasma Spray 



This work is supported by U.S. Office of Naval Research under Grant No. N00014-02-1-0171 managed by Drs. Lawrence Kabacoff and Steven Fishman.


  1. 1.
    Padture NP, Gell M, Jordan EH (2002) Science 296(5566):280CrossRefGoogle Scholar
  2. 2.
    Padture NP et al (2001) Acta Mater 49(12):2251CrossRefGoogle Scholar
  3. 3.
    Jadhav A et al (2005) Mater Sci Eng A-Struct 405(1–2):313CrossRefGoogle Scholar
  4. 4.
    Gell M et al (2004) Surf Coat Tech 177:97CrossRefGoogle Scholar
  5. 5.
    Bhatia T et al (2002) J Mater Res 17(9):2363CrossRefGoogle Scholar
  6. 6.
    Xie LD et al (2003) Mater Sci Eng A-Struct 362(1–2):204CrossRefGoogle Scholar
  7. 7.
    Xie LD et al (2004) Surf Coat Technol 177:103CrossRefGoogle Scholar
  8. 8.
    Klug HP, Alexander LE (1954) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New YorkGoogle Scholar
  9. 9.
    Yashima M et al (1997) J Mater Res 12(10):2575CrossRefGoogle Scholar
  10. 10.
    Geiculescu A, Spencer H (2000) J Sol-Gel Sci Tech 17(1):25CrossRefGoogle Scholar
  11. 11.
    Balmer ML, Lange FF, Levi CG (1992) J Am Ceram Soc 75(4):946CrossRefGoogle Scholar
  12. 12.
    Bansal NP, Hyatt MJ (1989) J Mater Res 4(5):1257CrossRefGoogle Scholar
  13. 13.
    Padture NP, Pye LD (1991) J Mater Sci Lett 10(5):269CrossRefGoogle Scholar
  14. 14.
    Yung SW, Shih PY, Chin TS (1998) Mater Chem Phys 57(2):111CrossRefGoogle Scholar
  15. 15.
    Anilkumar GM, Sung YM (2003) J Mater Sci 38(7):1391; DOI 10.1023/A: 1022939624043CrossRefGoogle Scholar
  16. 16.
    Hu Y, Huang CL (2000) J Non-Cryst Solids 278(1–3):170CrossRefGoogle Scholar
  17. 17.
    Semenov S, Cetegen B (2001) J ThermSpray Tech 10(2):326Google Scholar
  18. 18.
    Yashima M et al (1993) J Appl Phys 74(12):7603CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Chemical, Materials & Biomolecular Engineering, Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  2. 2.Department of Mechanical Engineering, Institute of Materials ScienceUniversity of ConnecticutStorrsUSA

Personalised recommendations